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- Carbon—Monoxide Spectrum To explain the carbon monox-
2 ide spectrum and the Zeeman
g‘ NWMMMMAMMWMMMMWMM effect we invoked angular mo-
b . mentum selection rules: Al =
02550 0.2600 02650 02700 02750 +1, Am = 0,1 to under-
Energy (V) stand light emission from the

transitions between atomic en-
ergy states.

Where do these selections rules
come from?
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What Is an Electromagnetic Wave?
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© Consider a charge at a point in space. It creates an E field at all
points in space.
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What Is an Electromagnetic Wave?

© Consider a charge at a point in space. It creates an E field at all
points in space.

@ Let the charge move and the E field changes.

© This disturbance of the E propagates through space via
electromagnetic induction - a changing electric field induces a
changing magnetic field B which induces an electric field...

@ If the charge oscillates sinusoidally, then you get ‘typical’
electromagnetic (EM) waves.

y

(b)
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More on Oscillating Charges

@ How is the amplitude of the wave related to the oscillator?
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More on Oscillating Charges

@ How is the amplitude of the wave related to the oscillator?
Amplitudepgscilator X Amplitude,,aye

@ What phenomenon connects points in space so the wave propagates?
Electromagnetic induction

Electric
Field
Lines

© Consider two charges +e a distance ry
apart and located along the z axis with
dipole moment d = en.

© How is the electric field related to (rp)
and the dipole moment?
E x fpcoswt — ergcoswt = d coswt
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Energy Transfer in an Electromagnetic Wave
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Rapidly Oscillating Energy Transfer
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Rapidly Oscillating Energy Transfer
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Rapidly Oscillating Energy Transfer
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Time Dependence of Coefficients

lo|?
5’3 0.5 tmax~107%s
la|?
0

P(t) = |W(7, t)|2 = | aeiE”t/h|n/m> + beiEn/t/hln///m/> |2
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Some Necessary Math Results

-
B = GOm0 =P P =B

U =m)! 1

gy =1 _ __ ginf
e A B TR

P () = (=™

For these equations, m is taken as > 0. In the formulas below,
however, m may be < Oalso;/ =0,1,2,

ceenlm| <L

Differential Equation

5 d2PM dP" ()
a-wh=—t W, 0 +[u!+n--
e

Recurrence Relations
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Some More Necessary Math Results
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