1. The state of a particle is represented by a wave function $|\psi(t)\rangle$ in a Hilbert space.

- 1. The state of a particle is represented by a wave function $|\psi(t)\rangle$ in a Hilbert space.
- 2. The independent variables x and p are represented by Hermitian operators \hat{X} and \hat{P} with the following matrix elements in the eigenbasis of \hat{X}

$$\langle x|\hat{X}|x'\rangle = x\delta(x-x') \qquad \langle x|\hat{P}|x'\rangle = x\delta'(x-x')$$

The operators corresponding to dependent variables $\omega(x, p)$ are given Hermitian operators $\Omega(\hat{X}, \hat{P}) = \omega(x \to \hat{X}, p \to \hat{P})$.

- 1. The state of a particle is represented by a wave function $|\psi(t)\rangle$ in a Hilbert space.
- 2. The independent variables x and p are represented by Hermitian operators \hat{X} and \hat{P} with the following matrix elements in the eigenbasis of \hat{X}

$$\langle x|\hat{X}|x'\rangle = x\delta(x-x') \qquad \langle x|\hat{P}|x'\rangle = x\delta'(x-x')$$

The operators corresponding to dependent variables $\omega(x,p)$ are given Hermitian operators $\Omega(\hat{X}, \hat{P}) = \omega(x \to \hat{X}, p \to \hat{P})$.

3. If the particle is in a state $|\psi\rangle$ measurement of the variable Ω will yield one of the eigenvalues ω with probability $P(\omega) = |\langle \omega | \psi \rangle|^2$. The state of the system will change from $|\psi\rangle$ to $|\omega\rangle$.

- 1. The state of a particle is represented by a wave function $|\psi(t)\rangle$ in a Hilbert space.
- 2. The independent variables x and p are represented by Hermitian operators \hat{X} and \hat{P} with the following matrix elements in the eigenbasis of \hat{X}

 $\langle x|\hat{X}|x'\rangle = x\delta(x-x') \qquad \langle x|\hat{P}|x'\rangle = x\delta'(x-x')$

The operators corresponding to dependent variables $\omega(x,p)$ are given Hermitian operators $\Omega(\hat{X}, \hat{P}) = \omega(x \to \hat{X}, p \to \hat{P})$.

- 3. If the particle is in a state $|\psi\rangle$ measurement of the variable Ω will yield one of the eigenvalues ω with probability $P(\omega) = |\langle \omega | \psi \rangle|^2$. The state of the system will change from $|\psi\rangle$ to $|\omega\rangle$.
- 4. The state vector $|\psi(t)\rangle$ obeys the Schroedinger equation

$$i\hbar \frac{d}{dt}\psi(t) = \hat{H} |\psi(t)\rangle$$

where $\hat{H}(\hat{X}, \hat{P}) = \mathcal{H}(x \to \hat{X}, p \to \hat{P})$ is the quantum Hamiltonian operator and \mathcal{H} is the corresponding classical problem.