1

What is a theory?

2

What is a theory?A mathematical model.

What is a theory?

- A mathematical model.
- Rules for using it.

What is a theory?

- A mathematical model.
- Rules for using it.
- Applies to or explains observations.

What is a theory?

- A mathematical model.
- Rules for using it.
- Applies to or explains observations.
- Must be testable.

What is a theory?

- A mathematical model.
- Rules for using it.
- Applies to or explains observations.
- Must be testable.

What is the Classical Physics program?

What is a theory?

- A mathematical model. Newton's Laws
- Rules for using it.
- Applies to or explains observations.
- Must be testable.

What is the Classical Physics program?

What is a theory?

• A mathematical model. Newton's Laws

8

- Rules for using it. Solve DE, apply initial values/boundary conditions
- Applies to or explains observations.
- Must be testable.

What is the Classical Physics program?

What is a theory?

- A mathematical model. Newton's Laws
- Rules for using it. Solve DE, apply initial values/boundary conditions
- Applies to or explains observations. Get $\vec{r}(t)$ or final location.

9

Must be testable.

What is the Classical Physics program?

What is a theory?

- A mathematical model. Newton's Laws
- Rules for using it. Solve DE, apply initial values/boundary conditions
- Applies to or explains observations. Get $\vec{r}(t)$ or final location.
- Must be testable. Voyager is in insterstellar space.

What is the Classical Physics program?

The model and the rules are often defined in a set of postulates.

Postulates

What is a postulate?

- suggest or assume the existence, fact, or truth of (something) as a basis for reasoning, discussion, or belief.
 - "a theory postulated by a respected scientist" synonyms: suggest, advance, posit, hypothesize, propose, assume
- (in ecclesiastical law) nominate or elect (someone) to an ecclesiastical office subject to the sanction of a higher authority.

- suggest or assume the existence, fact, or truth of (something) as a basis for reasoning, discussion, or belief.
 - "a theory postulated by a respected scientist" synonyms: suggest, advance, posit, hypothesize, propose, assume
- (in ecclesiastical law) nominate or elect (someone) to an ecclesiastical office subject to the sanction of a higher authority.

How do you know it's correct?

- suggest or assume the existence, fact, or truth of (something) as a basis for reasoning, discussion, or belief.
 - "a theory postulated by a respected scientist" synonyms: suggest, advance, posit, hypothesize, propose, assume
- (in ecclesiastical law) nominate or elect (someone) to an ecclesiastical office subject to the sanction of a higher authority.

How do you know it's correct? DATA!

- suggest or assume the existence, fact, or truth of (something) as a basis for reasoning, discussion, or belief.
 - "a theory postulated by a respected scientist" synonyms: suggest, advance, posit, hypothesize, propose, assume
- (in ecclesiastical law) nominate or elect (someone) to an ecclesiastical office subject to the sanction of a higher authority.

How do you know it's correct? DATA!

See here for an example of impeccable logic.

• Waves acting as particles: Planck's hypothesis, $E = h\nu = \hbar\omega$

- Waves acting as particles: Planck's hypothesis, $E = h\nu = \hbar\omega$
- Particles acting as waves: de Broglie matter waves, $p = h/\lambda$.

- Waves acting as particles: Planck's hypothesis, $E = h\nu = \hbar\omega$
- Particles acting as waves: de Broglie matter waves, $p = h/\lambda$.
- What do waves do? They interfere \rightarrow superposition.

- Waves acting as particles: Planck's hypothesis, $E = h\nu = \hbar\omega$
- Particles acting as waves: de Broglie matter waves, $p = h/\lambda$.
- What do waves do? They interfere \rightarrow superposition.
- Need a wave function $\Psi(\vec{r}, t)$, a differential equation, and a program/procedure to follow.

Double-Slit Interference of Light Waves

20

Interfering waves

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

Diffraction of Electrons and Electromagnetic Waves 21

Electron diffraction by gold

X-ray diffraction by $\mathrm{Cr}_2\mathrm{O}_3$

(a) After 28 electrons

(b) After 1000 electrons

(c) After 10000 electrons

(d) Two-slit electron pattern

@ 2006 Brooks/Cole - Thomson

(a) After 28 electrons

(b) After 1000 electrons

(c) After 10000 electrons

(d) Two-slit electron pattern

@ 2006 Brooks/Cole - Thomson

Jerry Gilfoyle

- Planck hypothesis built in.
- de Broglie hypothesis built in.

• Has waves. (Why?)

- Planck hypothesis built in.
- de Broglie hypothesis built in.

- Has waves. (Why?)
- What is

superposition/interference?

() Each physical, measurable quantity, A, has a corresponding operator, \hat{A} , that satisfies the eigenvalue equation $\hat{A} \phi = a\phi$ and measuring that quantity yields the eigenvalues of \hat{A} .

- **(**) Each physical, measurable quantity, A, has a corresponding operator, \hat{A} , that satisfies the eigenvalue equation $\hat{A} \phi = a\phi$ and measuring that quantity yields the eigenvalues of \hat{A} .
- (2) Measurement of the observable A leaves the system in a state that is an eigenfunction of \hat{A} .

- **(**) Each physical, measurable quantity, A, has a corresponding operator, \hat{A} , that satisfies the eigenvalue equation $\hat{A} \phi = a\phi$ and measuring that quantity yields the eigenvalues of \hat{A} .
- 2 Measurement of the observable A leaves the system in a state that is an eigenfunction of \hat{A} .
- **3** The state of a system is represented by a wave function Ψ that is continuous, differentiable and contains all possible information about the system. The 'intensity' is proportional to $|\Psi|^2$ and is interpreted as a probability. The average value of any observable A is $\langle A \rangle = \int_{all \ space} \Psi^* \hat{A} \ \Psi d\vec{r}$.

- **(**) Each physical, measurable quantity, A, has a corresponding operator, \hat{A} , that satisfies the eigenvalue equation $\hat{A} \phi = a\phi$ and measuring that quantity yields the eigenvalues of \hat{A} .
- 2 Measurement of the observable A leaves the system in a state that is an eigenfunction of \hat{A} .
- **3** The state of a system is represented by a wave function Ψ that is continuous, differentiable and contains all possible information about the system. The 'intensity' is proportional to $|\Psi|^2$ and is interpreted as a probability. The average value of any observable A is $\langle A \rangle = \int_{all \ space} \Psi^* \hat{A} \ \Psi d\vec{r}$.
- The time and spatial dependence of $\Psi(x, t)$ is determined by the time dependent Schroedinger equation.

$$i\hbarrac{\partial}{\partial t}\Psi(x,t)=-rac{\hbar^2}{2\mu}rac{\partial^2}{\partial x^2}\Psi(x,t)+V(x)\Psi(x,t)\qquad\mu\equiv {
m reduced\ mass.}$$

Interpreting the Quantum 'Intensity'

Electron diffraction by gold

The square of the magnitude of the wave function $|\psi(x, t)|^2 = \psi^*(x, t)\psi(x, t)$ is the probability density.

(a) After 28 electrons

(b) After 1000 electrons

(c) After 10000 electrons

(d) Two-slit electron pattern

@ 2006 Brooks/Cole - Thomson