Comparison of Bound and Free Particles

Particle in a Box
The potential
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=00 otherwise

Eigenfunctions and eigenvalues
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The potential
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Getting the coefficients
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Time Dependence
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The Configurations of Carbon Monoxide

The excited states of the diatomic
molecule carbon monoxide (CO) can

be observed by crossing a beam of
electrons with another beam of carbon
monoxide. The energy spectrum of the
scattered electrons is displayed here.

@ What is the simplest potential
we used for a bound system?

@ What is the energy spectrum
predicted for that potential?
Does it fit here?

Scattered intensity
(arbitrary units)

© Find the eigenfunctions and
eigenvalues of the harmonic os-

bttt

V=0 Vil V:2V:3V=4V:5V:6V:T7

5

co

trr

cillator. Does the energy spec-
trum reproduce the data?
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e Experiment

Electron
Electron Coﬂm7 WII’IW (Detector)

co

Analyzer

Molecular Beam

Monochromator

L,
Scattered intensity
(arbitrary units)

/ AFII!MM

Double electrostatic anatyzer
(72 dogrees) bttt
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Sweep Voitage, volt
Energy loss (eV)
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The Infinite Rectangular Well Potential

Energy
Levels n

Energy

— oW
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The Infinite Rectangular Well Potential
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molecule carbon monoxide (CO) can

be observed by crossing a beam of
electrons with another beam of carbon
monoxide. The energy spectrum of the
scattered electrons is displayed here.

@ What is the simplest potential
we used for a bound system?

@ What is the energy spectrum
predicted for that potential?
Does it fit here?

Scattered intensity
(arbitrary units)

© Find the eigenfunctions and
eigenvalues of the harmonic os-

bttt

V=0 Vil V:2V:3V=4V:5V:6V:T7

5

co

trr

cillator. Does the energy spec-
trum reproduce the data?

Jerry Gilfoyle The Configurations of CO

[¢]

Sweep Volitage, volt
Energy loss (eV)

it
2

5 /17



The Harmonic Oscillator Potential

V(x)
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The Harmonic Oscillator Potential

10 . N
F = —kxi
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The Harmonic Oscillator Potential

V(x)
N
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The Postulates

o

Each physical, measurable quantity, A, has a corresponding operator,
A | that satisfies the eigenvalue equatlon A ¢ = a¢ and measuring
that quantity yields the eigenvalues of A

Measurement of the observable A leaves the system in a state that is
an eigenfunction of A .

The state of a system is represented by a wave function W which is
continuous, differentiable and contains all the information about it.

o The average value of any observable A is determined by
<A> = fall space VA Vdr.
o The ‘intensity’ is proportional to|W|2,

The time development of the wave function is determined by

W(r, t h?
ihaég’) = —2—V2\U(?, t)+ V(P)V(7 t) u = reduced mass.
1
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Solving the Quantum Harmonic Oscillator

H . HX2
@ Potential energy: “5-
@ Hermite's equation:

d’H dH «@
— 26— ——1]J]H=0

e 2t (51

© Second-order, linear, ordinary, homegeneous differential equation

@ second-order: has a second derivative in it.
@ linear: only derivatives to the first power.
@ ordinary: one independent variable.

@ homogeneous: equal to zero.

© Method of Frobenius (19th century German mathematician)

@ Used to generate an infinite series solution.
@ Applies to equations of the form

o4 P C7(;) S0
z V4
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The Harmonic Oscillator Disaster 1

log(f(¢))

Red Solid - H2,(€)
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The Harmonic Oscillator Disaster 1

log(f(¢))

Red Solid - HZ,(¢)

Green Solid - offset x e?

§Z
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The Harmonic Oscillator Disaster 2

Red Solid - H2,(£)

Green Solid - offset x e?

52

log(f(¢))

2
Red Dashed - 7 HZ,(¢)
Green Dashed - offset x ef

¢
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The Harmonic Oscillator Disaster 2

log(f(¢))
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The Hermite Polynomials
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The Harmonic Oscillator Summary

Energy

_ 2
|¢n> = Ape ¢ /an(f) Levels n
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The Harmonic Oscillator Well Potential
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Quantum Weirdness

@ QM is unreal - objects do not have an existence independent of a
measurement.

@ QM is non-local - different components of a single wave function can
communicate instantaneously (at superluminal speeds).

@ The Measurement Problem - What happens in a measurement? The
wave function 'collapses’ from a delocalized object that is unreal (see
#1) into a 'real’ (independent of observation) object that obeys naive
realism.

o What is waving?

@ Why are there two forms of time evolution - the Collapse in response
to a measurement and the usual time development methods.

@ Bell's inequalities - there are measurable differences between naive
realism and QM. Experimental tests by Aspect in 1980's.

@ Macroscopic scenarios - Schroedingers cat, effect of decoherence.

@ The Wavefunction Collapse Problem - What happens physically? Can
we see it at intermediate stages (yes)? What are Everett multi-worlds?
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Is It Constant? The CO Spectrum Homework

3001 Blue: =2
Red: - =0.8
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Effect of Data Uncertainty On Fit

Weighted fit, AE=0.05 eV

Weighted fit, AE=0.1 eV

2. 2.
slope = 0.257 £ 0.007 eV slope =0.223 £ 0.02 eV
15| intercept = -0.0833 £ 0.03 eV 15l intercept=0.0619 £ 0.09 eV
310 310
W W
05 05
0.0 0ol -

Weighted fit, AE=0.2 eV

slope = 0.253 £ 0.04 eV
intercept = 0.0101 £ 0.2 eV,
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Effect of Data Uncertainty on Modeling

Weighted fit, AE=0.1 eV

Weighted fit, AE=0.1 eV, Quadratic component

2 3
slope = 0.223 £ 0.02 6V 25
15| intercept=0.0619+0.09 eV ’
20
— — slope = 0.477 + 0.03 eV
3 1.0 2 150 intercept=-0.301 £0.1 eV
W W
1.0
05
05
oof 0ol 4
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
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