
Comparison of Bound and Free Particles

Particle in a Box

The potential

V =0 0 < x < a

=∞ otherwise

Eigenfunctions and eigenvalues

|φn〉 =

√
2

a
sin
(nπx

a

)
En = n2 ~2π2

2ma2

Superposition

|ψ〉 =
∞∑
n=1

bn|φn〉 〈φm|φn〉 = δm,n

Getting the coefficients

bn = 〈φn|ψ〉 Pn = |bn|2

Time Dependence

Ψ(x , t) =
∞∑
n=1

bn|φn(x)〉e−iωnt

Free Particle

The potential

V = 0

Eigenfunctions and eigenvalues

|φ(k)〉 =
1
√

2π
e±ikx E =

~2k2

2m

Superposition

|ψ〉 =

∫ ∞
−∞

b(k)φ(k)dk

〈φ(k ′)|φ(k)〉 =δ(k − k ′)

Getting the coefficients

b(k) = 〈φ(k)|ψ〉 Pn = |b(k)|2dk

Time Dependence

Ψ(x , t) =

∫ ∞
−∞

b(k)φk (x)e−iω(k)tdk
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The Configurations of Carbon Monoxide

The excited states of the diatomic
molecule carbon monoxide (CO) can
be observed by crossing a beam of
electrons with another beam of carbon
monoxide. The energy spectrum of the
scattered electrons is displayed here.

1 What is the simplest potential
we used for a bound system?

2 What is the energy spectrum
predicted for that potential?
Does it fit here?

3 Find the eigenfunctions and
eigenvalues of the harmonic os-
cillator. Does the energy spec-
trum reproduce the data?
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The Experiment
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The Infinite Rectangular Well Potential
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The Configurations of Carbon Monoxide

The excited states of the diatomic
molecule carbon monoxide (CO) can
be observed by crossing a beam of
electrons with another beam of carbon
monoxide. The energy spectrum of the
scattered electrons is displayed here.
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The Harmonic Oscillator Potential
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V =
1

2
κx2

E =
p2

2m
+

1

2
κx2

Jerry Gilfoyle The Configurations of CO 6 / 17



The Harmonic Oscillator Potential
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The Postulates

1 Each physical, measurable quantity, A, has a corresponding operator,
Â , that satisfies the eigenvalue equation Â φ = aφ and measuring
that quantity yields the eigenvalues of Â .

2 Measurement of the observable A leaves the system in a state that is
an eigenfunction of Â .

3 The state of a system is represented by a wave function Ψ which is
continuous, differentiable and contains all the information about it.

The average value of any observable A is determined by
〈A〉 =

∫
all space

Ψ∗Â Ψd~r .

The ‘intensity’ is proportional to|Ψ|2.

4 The time development of the wave function is determined by

i~
∂Ψ(~r , t)

∂t
= − ~2

2µ
∇2Ψ(~r , t) + V (~r)Ψ(~r , t) µ ≡ reduced mass.
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Solving the Quantum Harmonic Oscillator

1 Potential energy: κx2

2

2 Hermite’s equation:

d2H

dξ2
− 2ξ

dH

dξ
+

(
α

β2
− 1

)
H = 0

3 Second-order, linear, ordinary, homegeneous differential equation

1 second-order: has a second derivative in it.
2 linear: only derivatives to the first power.
3 ordinary: one independent variable.
4 homogeneous: equal to zero.

4 Method of Frobenius (19th century German mathematician)

1 Used to generate an infinite series solution.
2 Applies to equations of the form

u′′ +
p(z)

z
u′ +

q(z)

z2
u = 0
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The Harmonic Oscillator Disaster 1
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The Harmonic Oscillator Disaster 2
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The Harmonic Oscillator Disaster 2
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The Hermite Polynomials

H0(ξ) =
1√√
π

H1(ξ) =
1√
2
√
π

2ξ

H2(ξ) =
1√
8
√
π

(4ξ2 − 2)

H3(ξ) =
1√

48
√
π

(8ξ3 − 12ξ)

H4(ξ) =
1√

384
√
π

(16ξ4 − 48ξ2 + 12)

H5(ξ) =
1√

3840
√
π

(32ξ5 − 160ξ3 + 120ξ)

H6(ξ) =
1√

46080
√
π

(64ξ6 − 480ξ4 + 720ξ2 − 120)

Jerry Gilfoyle The Configurations of CO 11 / 17



The Harmonic Oscillator Summary
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The Harmonic Oscillator Well Potential
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Quantum Weirdness

QM is unreal - objects do not have an existence independent of a
measurement.

QM is non-local - different components of a single wave function can
communicate instantaneously (at superluminal speeds).

The Measurement Problem - What happens in a measurement? The
wave function ’collapses’ from a delocalized object that is unreal (see
#1) into a ’real’ (independent of observation) object that obeys naive
realism.

What is waving?

Why are there two forms of time evolution - the Collapse in response
to a measurement and the usual time development methods.

Bell’s inequalities - there are measurable differences between naive
realism and QM. Experimental tests by Aspect in 1980’s.

Macroscopic scenarios - Schroedingers cat, effect of decoherence.

The Wavefunction Collapse Problem - What happens physically? Can
we see it at intermediate stages (yes)? What are Everett multi-worlds?
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Is It Constant? The CO Spectrum Homework
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Effect of Data Uncertainty On Fit

slope = 0.257 ± 0.007 eV

intercept = -0.0933 ± 0.03 eV
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Effect of Data Uncertainty on Modeling

slope = 0.223 ± 0.02 eV

intercept = 0.0619 ± 0.09 eV
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