Welcome to Quantum Mechanics

I cannot seriously believe in the quantum theory..."
Albert Einstein

Welcome to Quantum Mechanics

- I cannot seriously believe in the quantum theory..."
 Albert Einstein
- "The more success the quantum theory has the sillier it looks."

Albert Einstein

Welcome to Quantum Mechanics

The Spectral Lines Problem

The Spectral Lines Problem

The Spectral Lines Problem

A 'Simple' Example - Infinite Rectangular Well Potential

Blackbody Radiation

A black body is an idealized physical body that absorbs all incident electromagnetic radiation, regardless of frequency or angle of incidence. In thermal equilibrium (at a constant temperature) it emits electromagnetic radiation called black-body radiation with two notable properties.

- 1. It is an ideal emitter: it emits as much or more energy at every frequency than any other body at the same temperature.
- 2. It is a diffuse emitter: the energy is radiated isotropically, independent of direction.

Measuring The Blackbody Radiation

Measured by Lummer and Pringsheim (1899).

$$R_T(
u)d
u = rac{ ext{energy}}{ ext{time-area}}$$

in the range $\nu \rightarrow \nu + d\nu$

The Ultraviolet Catastrophe

Rayleigh-Jeans Law

 $u(\nu)d\nu = \frac{8\pi}{c^3}k_BT\nu^2d\nu \quad \text{in the range } \nu \to \nu + d\nu$

T - temperature. k_B - Boltzmann constant.

Planck's Guess - the Boltzmann Distribution

Planck's Guess - Do a Riemannian Sum

Planck's Guess - Do a Riemannian Sum, low ν

Planck's Guess - Do a Riemannian Sum - not as lov

Planck's Guess - Do a Riemannian Sum - moderate

Planck's Guess - Do a Riemannian Sum - high ν

Ε

Planck's Guess - Do a Riemannian Sum - higher ν

The Ultraviolet Catastrophe

$$u(\nu)d\nu = \frac{8\pi}{c^3}kT\nu^2d\nu \quad \text{in the range } \nu \to \nu + d\nu$$

T - temperature. k - Boltzmann constant.

The Blackbody Radiation

Scan of first showing of the COBE measurement of cosmic microwave background radiation at the American Astronomical Society meeting in January, 1990.

The Blackbody Radiation

FIG. 2.—Preliminary spectrum of the cosmic microwave background from the FIRAS instrument at the north Galactic pole, compared to a blackbody. Boxes are measured points and show size of assumed 1% error band. The units for the vertical axis are 10^{-4} ergs s⁻¹ cm⁻² sr⁻¹ cm.

COBE measurement of the cosmic microwave background radiation from J.C Mather *et al.*, Astrophysical Journal *354*, L37-40 (1990).

Other Mysteries That Needed Quantum Mechanics

- Photoelectric effect
- Compton effect
- Spectroscopy
- Davisson-Germer
- Radioactivity
- Nuclear sizes