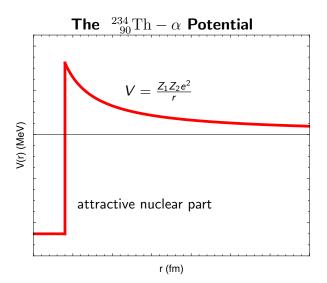
Consider the alpha decay shown below where a uranium nucleus spontaneously breaks apart into a ${}^{4}\text{He}$ or alpha particle and ${}^{234}_{90}\text{Th}$.

$$^{238}_{92}$$
U $\rightarrow {}^{4}$ He + $^{234}_{90}$ Th E(⁴He) = 4.2 MeV

To study this reaction we first map out the ${}^{4}\text{He} - {}^{234}_{90}\text{Th}$ potential energy. We reverse the decay above and use a beam of ${}^{4}\text{He}$ nuclei striking a ${}^{234}_{90}\text{Th}$ target. The ${}^{4}\text{He}$ beam comes from the radioactive decay of another nucleus ${}^{210}_{84}\text{Po}$ and $\text{E}({}^{4}\text{He}) = 5.407$ MeV.

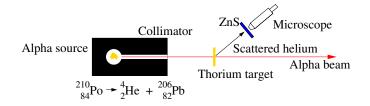
- What is the distance of closest approach of the ⁴He to the ²³⁴₉₀Th target if the Coulomb force is the only one that matters?
- Is the Coulomb force the only one that matters?
- What is the lifetime of the $^{238}_{92}$ U?

What Do We Know?



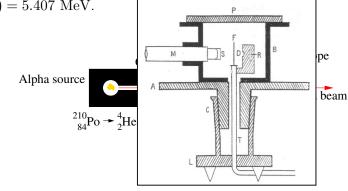
Rutherford Scattering

What is the distance of closest approach of the ${}^{4}\text{He}$ to the ${}^{234}_{90}\text{Th}$ target if only the Coulomb force is active? Is the Coulomb force the only one active? The energy of the ${}^{4}\text{He}$ emitted by the ${}^{210}_{84}\text{Po}$ to make the beam is $\text{E}({}^{4}\text{He}) = 5.407 \text{ MeV}.$



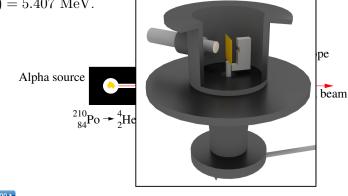
Rutherford Scattering

What is the distance of closest approach of the ${}^{4}\text{He}$ to the ${}^{234}_{90}\text{Th}$ target if only the Coulomb force is active? Is the Coulomb force the only one active? The energy of the ${}^{4}\text{He}$ emitted by the ${}^{210}_{84}\text{Po}$ to make the beam is $\mathrm{E}({}^{4}\text{He}) = 5.407 \ \mathrm{MeV}$.

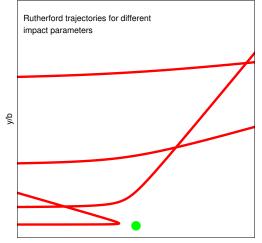


Rutherford Scattering

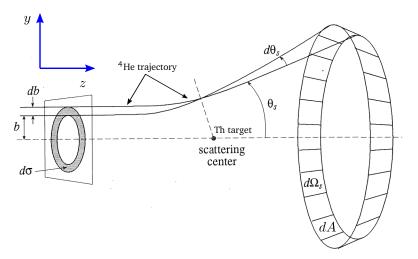
What is the distance of closest approach of the ${}^{4}\text{He}$ to the ${}^{234}_{90}\text{Th}$ target if only the Coulomb force is active? Is the Coulomb force the only one active? The energy of the ${}^{4}\text{He}$ emitted by the ${}^{210}_{84}\text{Po}$ to make the beam is $\text{E}({}^{4}\text{He}) = 5.407 \text{ MeV}.$



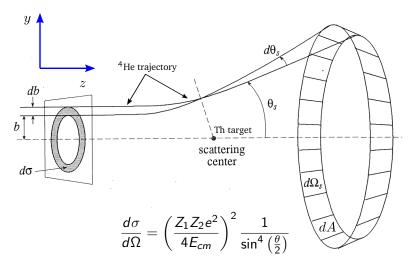
Demo



The Differential Cross Section

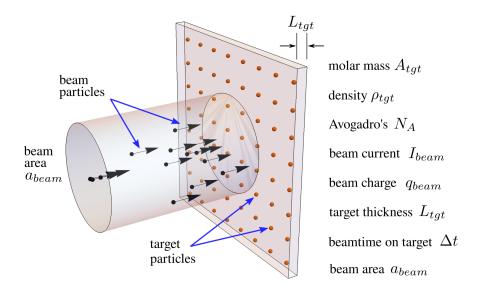


The Differential Cross Section



 $=rac{dN_s}{dt} \propto rac{\mathrm{incident}}{\mathrm{beam}} imes \mathrm{target} imes \mathrm{detector}$ particle rate scattered into rate density size dA of detector $rac{dN_s}{dt} \propto rac{dN_{inc}}{dt} imes n_{tgt} imes d\Omega$ $\frac{dN_s}{dt} = \frac{d\sigma}{d\Omega} \times \frac{dN_{inc}}{dt} \times n_{tgt} \times d\Omega$ *I_{beam}* - beam current $\frac{dN_{inc}}{ll} = \frac{\Delta N_{inc}}{\Delta l} = \frac{I_{beam}}{Z}$ Z - beam charge ρ_{tgt} - target density $n_{tgt} = \frac{\rho_{tgt}}{A_{tgt}} N_A V_{hit} \frac{1}{a_{heam}} = \frac{\rho_{tgt}}{A_{tgt}} N_A L_{tgt}$ A_{tgt} - molar mass V_{hit} - beam-target overlap L_{tgt} - target thickness

Areal or Surface Density of Nuclear Targets

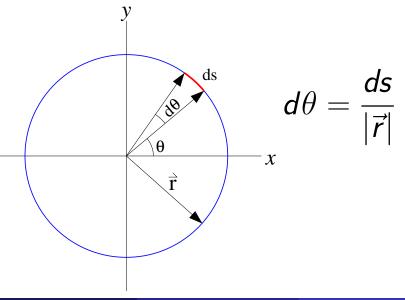


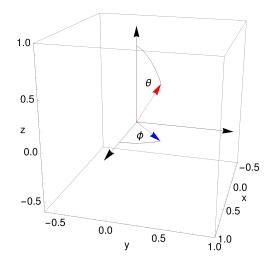
10

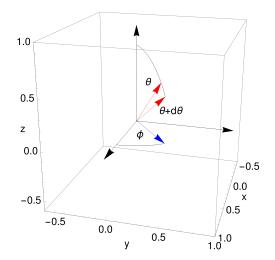
$\begin{array}{ll} \text{particle rate} & \text{incident} \\ \text{scattered into} & = \frac{dN_s}{dt} & \propto & \text{beam} \\ dA \text{ of detector} & \text{rate} \end{array}$	areal angular × target × detector density size
$rac{dN_s}{dt} \propto rac{dN_{inc}}{dt}$	$ imes$ n _{tgt} $ imes$ d Ω
$\frac{dN_s}{dt} = \frac{d\sigma}{d\Omega} \times \frac{dN_s}{dt}$	$\frac{d_{inc}}{dt} \times n_{tgt} \times d\Omega$
$rac{dN_{inc}}{dt} = rac{\Delta N_{inc}}{\Delta t} = rac{I_{beam}}{Ze}$	<i>I_{beam} -</i> beam current Z - beam charge
$n_{tgt} = rac{ ho_{tgt}}{A_{tgt}} N_A V_{hit} rac{1}{a_{beam}} = rac{ ho_{tgt}}{A_{tgt}} N_A L_{tgt}$	$ ho_{tgt}$ - target density A_{tgt} - molar mass V_{hit} - beam-target overlap L_{tgt} - target thickness
$d\Omega = rac{dA_{det}}{r_{det}^2} = rac{\Delta A_{det}}{r_{det}^2} = \sin heta d heta d\phi$	<i>dA_{det}</i> - detector area <i>r_{det}</i> - target-detector distance

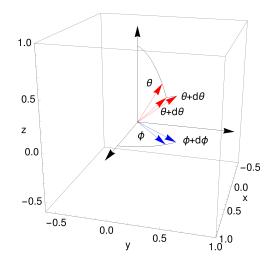
Jerry Gilfoyle

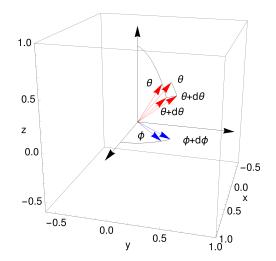
What is an Angle?

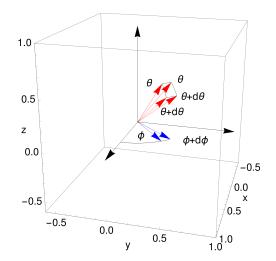


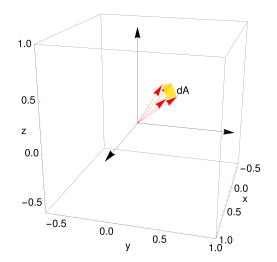


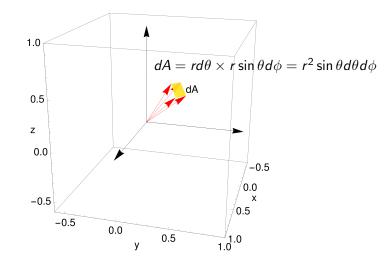


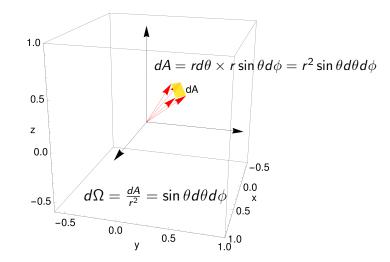






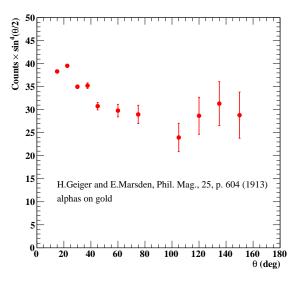




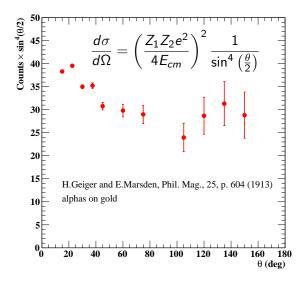


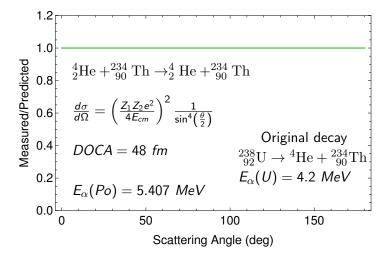
particle rate scattered into = <i>dA</i> of detector	$rac{dN_s}{dt} \propto egin{array}{cc} ext{incident} & \ ext{beam} & imes & \ ext{rate} & \ ext{rate} & \ ext{rate} & \ ext{array} & \ ext{incident} & \ ext{in$	areal angular target × detector density size
	$rac{dN_{s}}{dt} \propto rac{dN_{inc}}{dt} imes$	$< n_{tgt} \times d\Omega$
	$\frac{dN_s}{dt} = \frac{d\sigma}{d\Omega} \times \frac{dN_{ind}}{dt}$	$X \sim n_{tgt} \times d\Omega$
$rac{dN_{inc}}{dt} = rac{\Delta N_{inc}}{\Delta t}$	$=rac{I_{beam}}{Ze}$	<i>l_{beam}</i> - beam current <i>Z</i> - beam charge
$n_{tgt} = rac{ ho_{tgt}}{A_{tgt}} N_A V_{hit} rac{1}{a_{beam}}$	$h = rac{ ho_{tgt}}{A_{tgt}} N_A L_{tgt}$	$ ho_{tgt}$ - target density A_{tgt} - molar mass V_{hit} - beam-target overlap L_{tgt} - target thickness
$d\Omega = rac{dA_{det}}{r_{det}^2} = rac{\Delta A_{det}}{r_{det}^2}$	$\phi = \sin \theta d\theta d\phi$	dA_{det} - detector area r_{det} - target-detector distance

Actual Rutherford Scattering Results



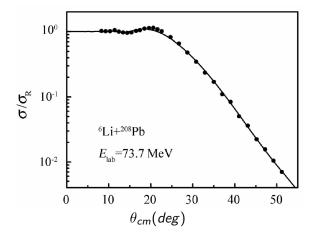
Actual Rutherford Scattering Results

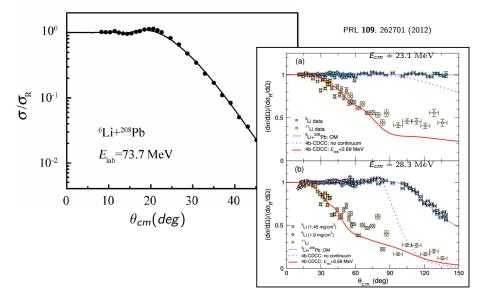


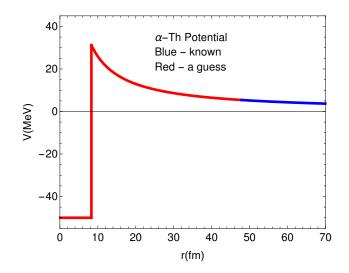


What does this say about the ${}_{2}^{4}\text{He} - {}_{90}^{234}$ Th potential energy?

25







- We have probed the ${}^{234}_{90}$ Th potential into an internuclear distance of $r_{DOCA} = 48 \ fm$ using a 4 He beam of E(4 He) = 5.407 MeV.
- Intersection of the section of th
- **③** The radioactive decay ${}^{238}_{92}$ U → ${}^{234}_{90}$ Th + ⁴He emits an α (or ⁴He) with energy E_{α} = 4.2 MeV.
- For a classical 'decay' the emitted α should have an energy of at least $E_{min} = 5.407 \text{ MeV}.$
- Solution appears the 'decay' α starts out at a distance $r_{emit} = 62$ fm.
- I How do we explain this?

- 30
- We have probed the ${}^{234}_{90}$ Th potential into an internuclear distance of $r_{DOCA} = 48 \ fm$ using a 4 He beam of E(4 He) = 5.407 MeV.
- **②** The data are consistent with the Coulomb force and no others.
- **③** The radioactive decay ${}^{238}_{92}$ U → ${}^{234}_{90}$ Th + ⁴He emits an α (or ⁴He) with energy E_{α} = 4.2 MeV.
- For a classical 'decay' the emitted α should have an energy of at least $E_{min} = 5.407$ MeV.
- **(3)** It appears the 'decay' α starts out at a distance $r_{emit} = 62$ fm.
- 6 How do we explain this?

Quantum Tunneling!

- We have probed the ${}^{234}_{90}$ Th potential into an internuclear distance of $r_{DOCA} = 48 \ fm$ using a 4 He beam of E(4 He) = 5.407 MeV.
- **②** The data are consistent with the Coulomb force and no others.
- **③** The radioactive decay ${}^{238}_{92}$ U → ${}^{234}_{90}$ Th + ⁴He emits an α (or ⁴He) with energy E_{α} = 4.2 MeV.
- For a classical 'decay' the emitted α should have an energy of at least $E_{min} = 5.407$ MeV.
- Solution appears the 'decay' α starts out at a distance $r_{emit} = 62 \ fm$.
- 6 How do we explain this?

Quantum Tunneling!

What do we measure?

- We have probed the ${}^{234}_{90}$ Th potential into an internuclear distance of $r_{DOCA} = 48 \ fm$ using a 4 He beam of E(4 He) = 5.407 MeV.
- Intersection of the section of th
- **③** The radioactive decay ${}^{238}_{92}$ U → ${}^{234}_{90}$ Th + ⁴He emits an α (or ⁴He) with energy E_{α} = 4.2 MeV.
- For a classical 'decay' the emitted α should have an energy of at least $E_{min} = 5.407$ MeV.
- Solution appears the 'decay' α starts out at a distance $r_{emit} = 62 \text{ fm}$.
- 6 How do we explain this?

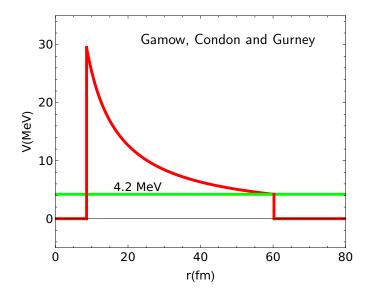
Quantum Tunneling!

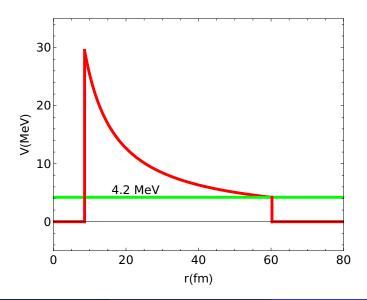
What do we measure?

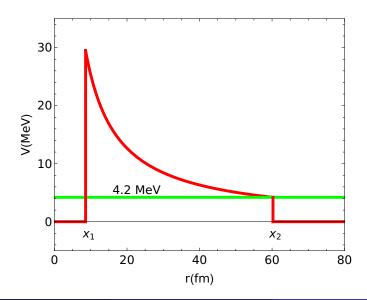
Lifetimes
$$t_{1/2}(^{238}\text{U}) = 4.5 \times 10^9 \text{ yr}$$

- The α particle (⁴He) is confined by the nuclear potential and 'bounces' back and forth between the walls of the nucleus. Assume its energy is the same as the emitted nucleon so v = √(2E_α/m).
- Each time it 'bounces' off the nuclear wall it has a finite probability of tunneling through the barrier equal to the transmission coefficient T.
- The decay rate will the product of the rate of collisions with a wall and the probability of transmission equal to ^v/_{2R} × T.
- The lifetime is the inverse of the decay rate $\frac{2R}{vT} = 2R\sqrt{\frac{m}{2E}\frac{1}{T}}$.
- The radius of a nucleus has been found to be described by $r_{nuke} = 1.2A^{1/3}$ where A is the mass number of the nucleus.
- We are liberally copying the work of Gamow, Condon, and Gurney. Like them we will assume V = 0 inside the nucleus and V = 0 from the classical turning point to infinity.

33

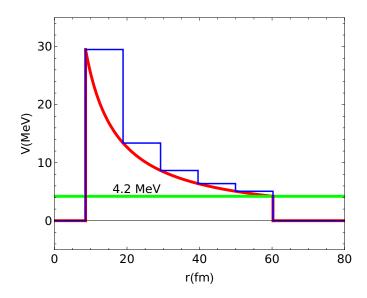


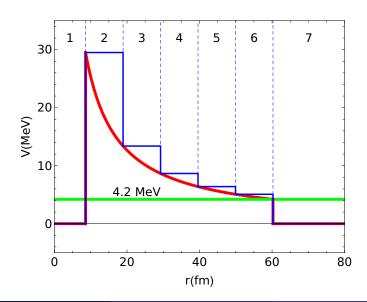




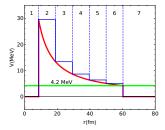
$$\begin{aligned} \zeta_1 &= \mathbf{t}\zeta_3 = \mathbf{d}_{12}\mathbf{p}_2\mathbf{d}_{21}\mathbf{p}_2^{-1}\zeta_3 = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix}\zeta_3 \qquad T = \frac{1}{|t_{11}|^2} \\ \mathbf{d}_{12} &= \frac{1}{2}\begin{pmatrix} 1 + \frac{k_2}{k_1} & 1 - \frac{k_2}{k_1} \\ 1 - \frac{k_2}{k_1} & 1 + \frac{k_2}{k_1} \end{pmatrix} \quad \mathbf{d}_{21} &= \frac{1}{2}\begin{pmatrix} 1 + \frac{k_1}{k_2} & 1 - \frac{k_1}{k_2} \\ 1 - \frac{k_1}{k_2} & 1 + \frac{k_1}{k_2} \end{pmatrix} \\ \mathbf{p}_1^{-1} &= \begin{pmatrix} e^{ik_22a} & 0 \\ 0 & e^{-ik_22a} \end{pmatrix} \qquad \mathbf{p}_2 = \begin{pmatrix} e^{-ik_22a} & 0 \\ 0 & e^{ik_22a} \end{pmatrix} \\ k_1 &= \sqrt{\frac{2mE}{\hbar^2}} \qquad k_2 = \sqrt{\frac{2m(E-V)}{\hbar^2}} \end{aligned}$$

$$t_{11} = \frac{1}{4} \left[\left(1 + \frac{k_2}{k_1} \right) e^{-ik_2 2a} \left(1 + \frac{k_1}{k_2} \right) + \left(1 - \frac{k_2}{k_1} \right) e^{ik_2 2a} \left(1 - \frac{k_1}{k_2} \right) \right]$$





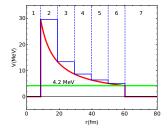
The Transfer-Matrix Solution



$$\mathbf{d_{nm}} = \frac{1}{2} \begin{pmatrix} 1 + \frac{k_m}{k_n} & 1 - \frac{k_m}{k_n} \\ 1 - \frac{k_m}{k_n} & 1 + \frac{k_m}{k_n} \end{pmatrix} \quad \mathbf{p_m} = \begin{pmatrix} e^{-ik_m s} & 0 \\ 0 & e^{ik_m s} \end{pmatrix}$$
$$k_0 = \sqrt{\frac{2mE}{\hbar^2}} = k_6 \qquad k_n = \sqrt{\frac{2m(E - V_n)}{\hbar^2}}$$

n - left side of barrier **m** - right side of barrier V_n - potential of nth step. *s* - step size.

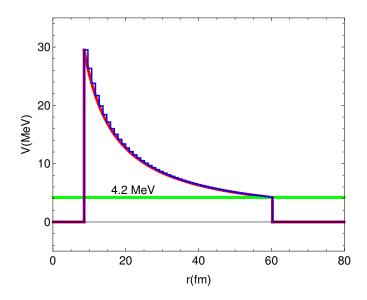
The Transfer-Matrix Solution



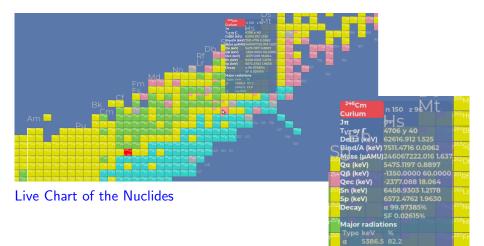
$$\mathbf{d}_{\mathbf{n}\mathbf{m}} = \frac{1}{2} \begin{pmatrix} 1 + \frac{k_m}{k_n} & 1 - \frac{k_m}{k_n} \\ 1 - \frac{k_m}{k_n} & 1 + \frac{k_m}{k_n} \end{pmatrix} \quad \mathbf{p}_{\mathbf{m}} = \begin{pmatrix} e^{-ik_m s} & 0 \\ 0 & e^{ik_m s} \end{pmatrix}$$
$$k_0 = \sqrt{\frac{2mE}{\hbar^2}} = k_6 \qquad k_n = \sqrt{\frac{2m(E - V_n)}{\hbar^2}}$$

n - left side of barrier **m** - right side of barrier V_n - potential of nth step. *s* - step size.

$$\psi_1' = \mathbf{d}_{12}\mathbf{p}_2 \cdot \mathbf{d}_{23}\mathbf{p}_3 \cdot \mathbf{d}_{34}\mathbf{p}_4 \cdot \underbrace{\mathbf{d}_{45}\mathbf{p}_5}_{\text{unit cell}} \cdot \mathbf{d}_{56}\mathbf{p}_6 \cdot \mathbf{d}_{67}\mathbf{p}_7 \ \psi_7' \underset{\sim}{\sim}$$



Getting Nuclear Data



E_{α}	$t_{1/2}(\text{meas/s})$	Nucleus	Z	А	T(calculated)	$t_{1/2}$ (calc/s)
8.78	$3. imes 10^{-7}$	212-Po	84	212	$\textbf{1.11467}\times \textbf{10}^{-\textbf{15}}$	$\textbf{7.27271}\times \textbf{10}^{-7}$
6.78	0.15	216-Po	84	216	$\textbf{7.14393}\times \textbf{10}^{-22}$	1.2994
8.	0.0001	215-At	85	215	$\textbf{3.75948}\times \textbf{10}^{-\textbf{18}}$	0.00022696
6.26	1500.	212-Rn	86	212	$\textbf{4.86429}\times \textbf{10}^{-25}$	1973.71
7.55	0.9	223-Th	90	223	$1.81907 imes 10^{-21}$	0.488752
7.17	1500.	244-Cf	98	244	$\texttt{6.34009} \times \texttt{10}^{-\texttt{26}}$	14828.1
7.9	150.	248-Fm	100	248	$\textbf{7.34237}\times \textbf{10}^{-24}$	122.643
4.19	$\texttt{1.4}\times\texttt{10}^{\texttt{17}}$	238-U	92	238	$\texttt{5.10184}\times\texttt{10}^{-\texttt{41}}$	$\texttt{2.39057} \times \texttt{10}^{\texttt{19}}$
6.58	2200.	232-Pu	94	232	$\texttt{6.19107} \times \texttt{10}^{-27}$	155869.
6.01	4700.	239-Am	95	239	$\textbf{4.28498}\times\textbf{10}^{-30}$	$\texttt{2.37989} \times \texttt{10}^{\texttt{8}}$

Nuclear Data

	-
	h
-	
	<u> </u>

E_{α} t	t _{1/2} (meas/s)	Nucleus	Z	А	T(calculated)	$t_{1/2} \ (calc/s)$
8.78 3	$3. imes 10^{-7}$	212-Po	84	212	$1.11467 imes 10^{-15}$	$7.27271 imes 10^{-7}$
6.78 0	9.15	216-Po	84	216	$7.14393 imes 10^{-22}$	1.2994
8. 0	9.0001	215-At	85	215	$3.75948 imes 10^{-18}$	0.00022696
6.26 1	1500.	212-Rn	86	212	$\textbf{4.86429} \times \textbf{10}^{-25}$	1973.71
7.55 0	9.9	223–Th	90	223	$1.81907 imes 10^{-21}$	0.488752
7.17 1	1500.	244-Cf	98	244	$6.34009 imes 10^{-26}$	14828.1
7.9 1	150.	248-Fm	100	248	$7.34237 imes 10^{-24}$	122.643
4.19 1	$1.4 imes10^{17}$	238-U	92	238	$\texttt{5.10184} \times \texttt{10}^{-\texttt{41}}$	$\texttt{2.39057}\times\texttt{10^{19}}$
6.58 2	2200.	232-Pu	94	232	$6.19107 imes 10^{-27}$	155869.
4.01 4	$4.42 imes 10^{17}$	232–Th	90	232	$1.62046 imes 10^{-41}$	$\textbf{7.62832}\times \textbf{10}^{\textbf{19}}$
5.36 2	$2.66 imes10^{11}$	245-Cm	96	245	$2.62605 imes 10^{-34}$	$\texttt{4.14617} \times \texttt{10}^{\texttt{12}}$
5.53 4	$4.35 imes10^{10}$	247-Bk	97	247	${\bf 1.00287 \times 10^{-33}}$	$\texttt{1.07177}\times\texttt{10^{12}}$
7.039 9	914.	252-Fm	100	252	$3.24026 imes 10^{-27}$	295989.
5.275 2	$2.32 imes10^{11}$	243-Am	95	243	$2.33955 imes 10^{-34}$	$\texttt{4.67844} \times \texttt{10}^{\texttt{12}}$
5.49 1	1.36 $ imes$ 10 ¹⁰	241-Am	95	241	$4.93363 imes 10^{-33}$	$\texttt{2.16868} \times \texttt{10^{11}}$
4.01 3	332000.	222-Rn	86	222	$\textbf{4.01718} \times \textbf{10}^{-39}$	$\texttt{3.03226}\times\texttt{10}^{\texttt{17}}$

Difference Between Lecture and Readings

There are some differences between the formula for Rutherford scattering in the reading (go here) that are discussed below. The lecture formula is

$$\frac{d\sigma}{d\Omega} = \left(\frac{Z_1 Z_2 e^2}{4E_{cm}}\right)^2 \frac{1}{\sin^4\left(\frac{\theta}{2}\right)} \tag{1}$$

while the expression in the reading is the following.

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi}{2} z^2 Z^2 \alpha^2 \left[\frac{\hbar c}{KE}\right]^2 \frac{1}{(1-\cos\theta)^2}$$
(2)

To go from Eq 1 to Eq 2 you need to make the following changes.

Change some variable names so Z₁ = z, Z₂ = Z, E_{cm} = KE.
 Use dΩ = sin θdθdφ = dcos θdφ and integrate over all φ or φ = 0 → 2π. This gives you a factor of 2π in front of Eq 1.

$$\frac{d\sigma}{d\cos\theta} = \int_0^{2\pi} \frac{d\sigma}{d\Omega} d\phi = 2\pi \frac{d\sigma}{d\Omega}$$
(3)

Make the following substitutions

$$e^2 = \alpha \hbar c$$
 and $\sin^2 \frac{\theta}{2} = \frac{1}{2}(1 - \cos \theta)$ (4)

and you get Eq 2.

Jerry Gilfoyle

Coding Guidelines

- Optime ALL variables with descriptive names.
- Add comments for each 'section' of code.
- Put inputs for individual calculation at the top of your code with comments describing each item.
- 9 Put constants used for all calculations in one section.

- Suppress printing until the end.
- Print output at the end.

```
(* extract the transmission coefficient from the
    transition matrix here. *)
tr = Abs[1/(Conjugate[trans[[1, 1]]) * trans[[1, 1]])];
Print["Transmission Coefficient: ", tr];
```

Results

