Why Does Uranium Alpha Decay?

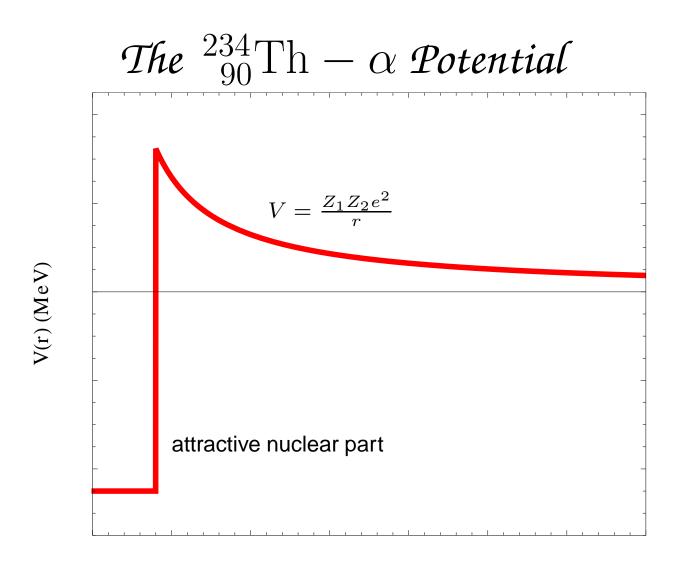
Consider the alpha decay shown below where a uranium nucleus spontaneously breaks apart into a ${}^{4}\text{He}$ or alpha particle and ${}^{234}_{90}\text{Th}$.

$$^{238}_{92}\text{U} \rightarrow ^{4}\text{He} + ^{234}_{90}\text{Th} \qquad \text{E}(^{4}\text{He}) = 4.2 \text{ MeV}$$

To study this reaction we first map out the ${}^{4}\text{He} - {}^{234}_{90}$ Th potential energy. We reverse the decay above and use a beam of ${}^{4}\text{He}$ nuclei striking a ${}^{234}_{90}$ Th target. The ${}^{4}\text{He}$ nuclei come from the radioactive decay of another nucleus ${}^{210}_{84}$ Po.

- 1. What is the distance of closest approach of the ${}^{4}\text{He}$ to the ${}^{234}_{90}\text{Th}$ target if the Coulomb force is the only one that matters?
- 2. Is the Coulomb force the only one that matters?
- 3. What is the lifetime of the $^{238}_{92}$ U?

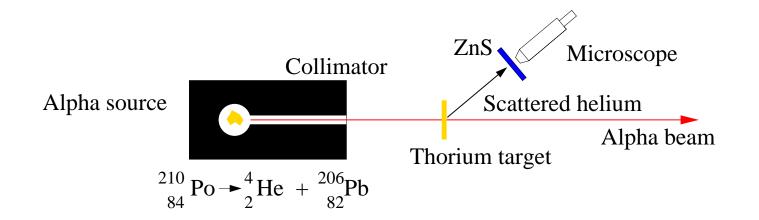
What Do We Know?



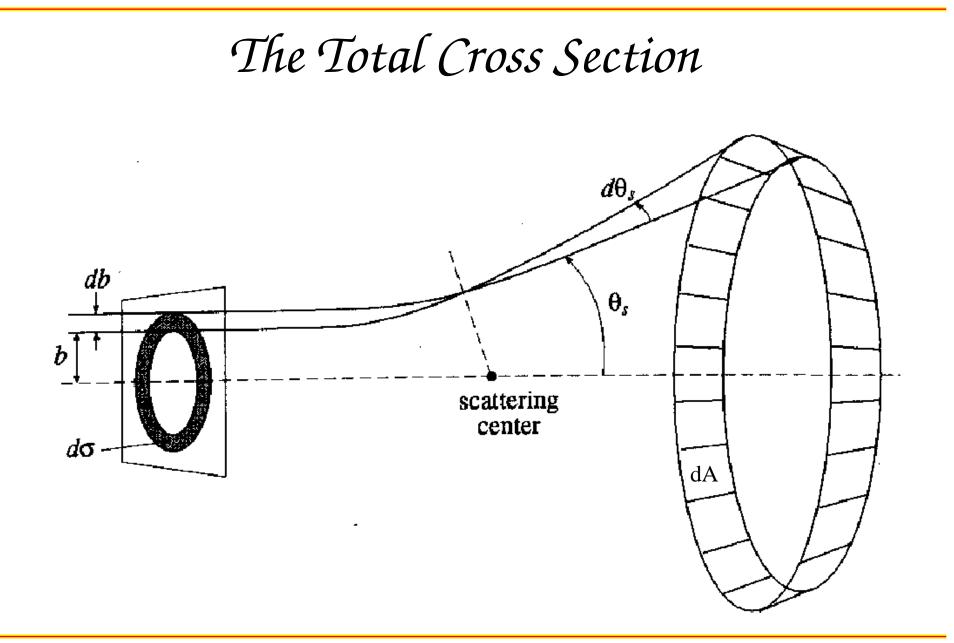
Mapping the Potential Energy

Rutherford Scattering

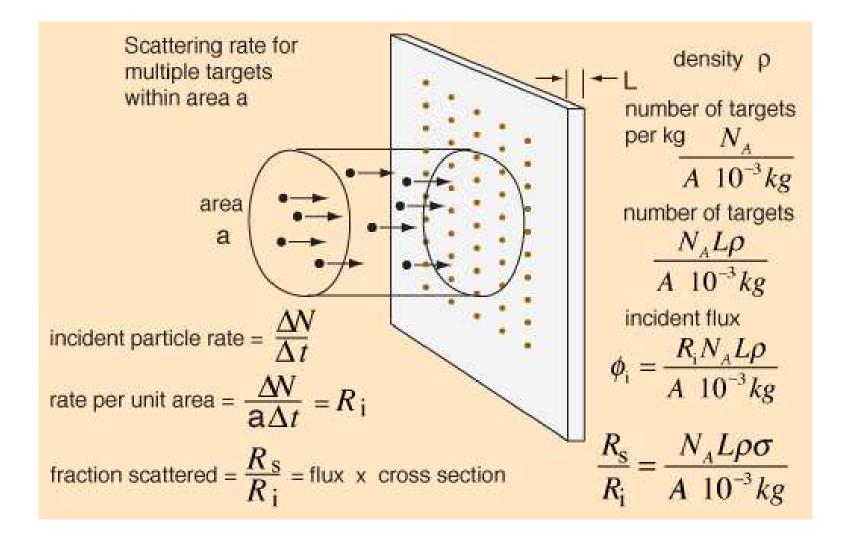
What is the distance of closest approach of the ${}^{4}\mathrm{He}$ to the ${}^{234}_{90}\mathrm{Th}$ target if only the Coulomb force is active? Is the Coulomb force the only one active? The energy of the ${}^{4}\mathrm{He}$ emitted by the ${}^{210}_{84}\mathrm{Po}$ is $\mathrm{E}({}^{4}\mathrm{He}) = 5.407~\mathrm{MeV}$.



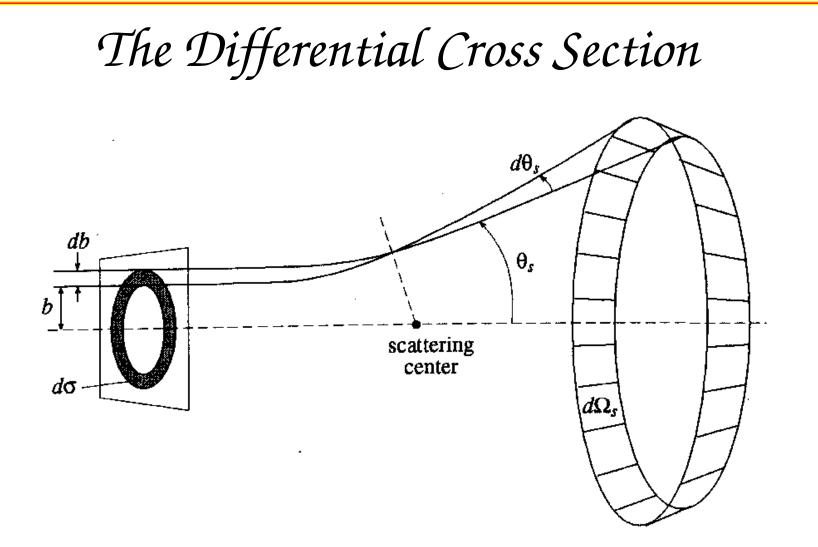
Mapping the Potential Energy

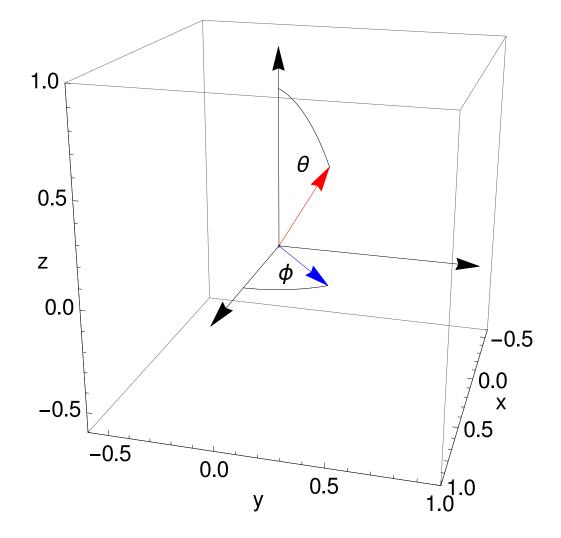


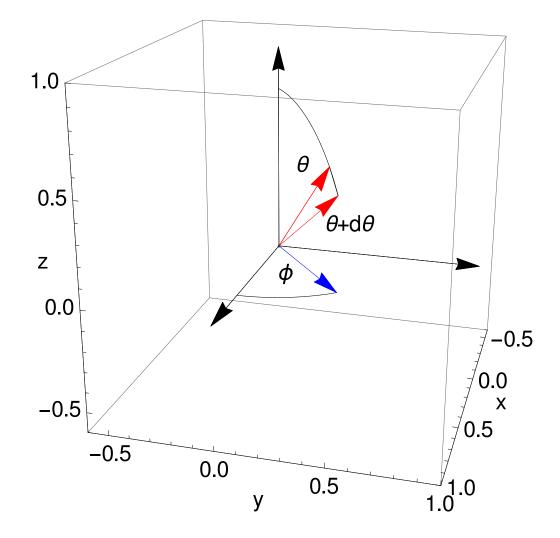
Areal or Surface Density of Nuclear Targets

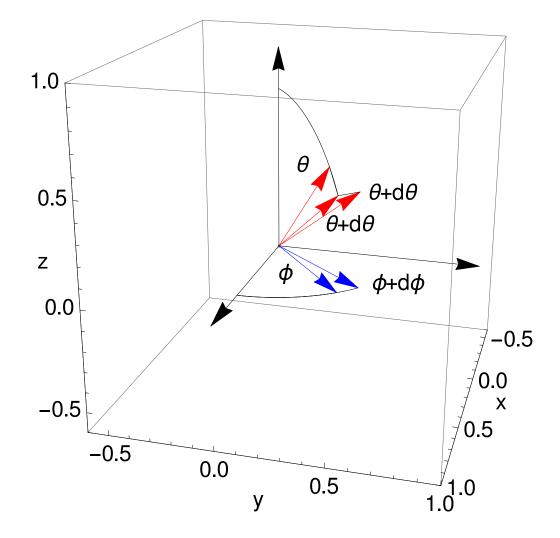


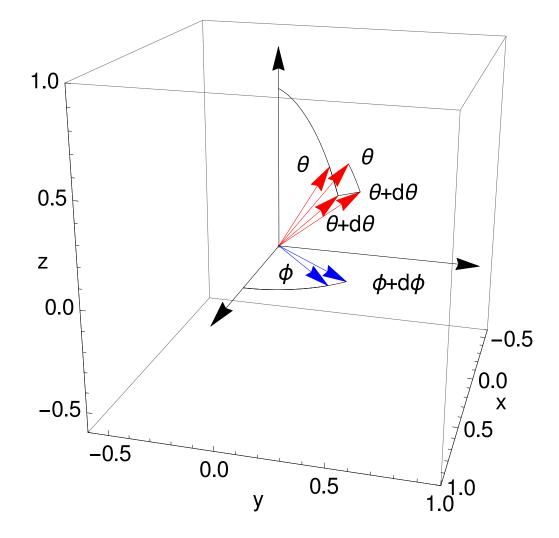
Mapping the Potential Energy

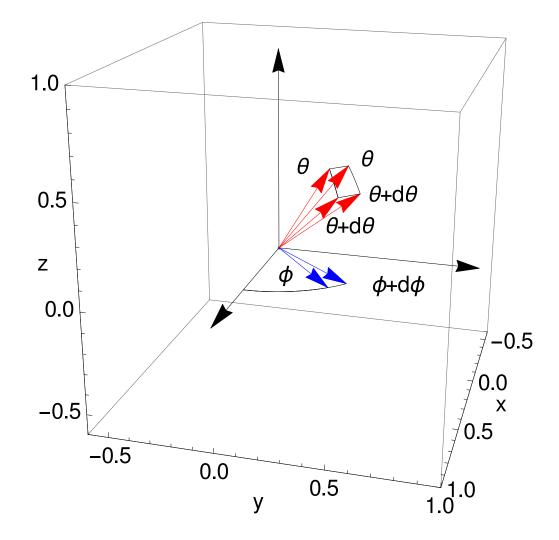






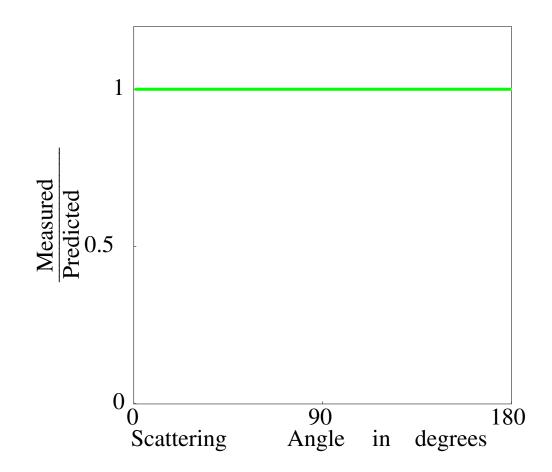






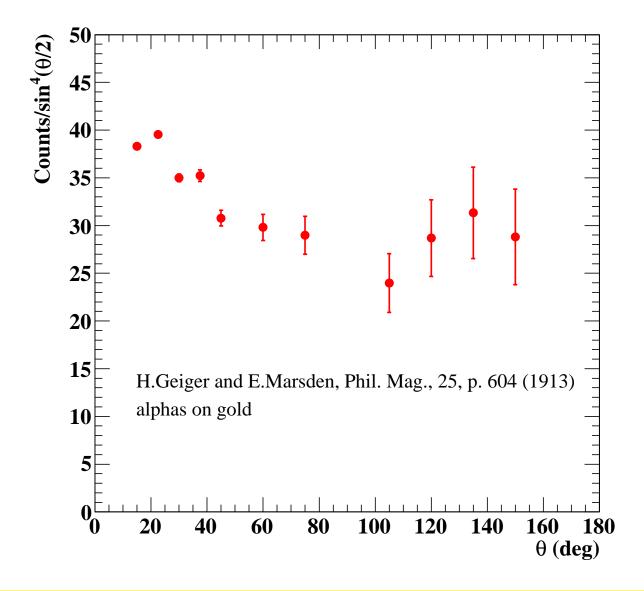


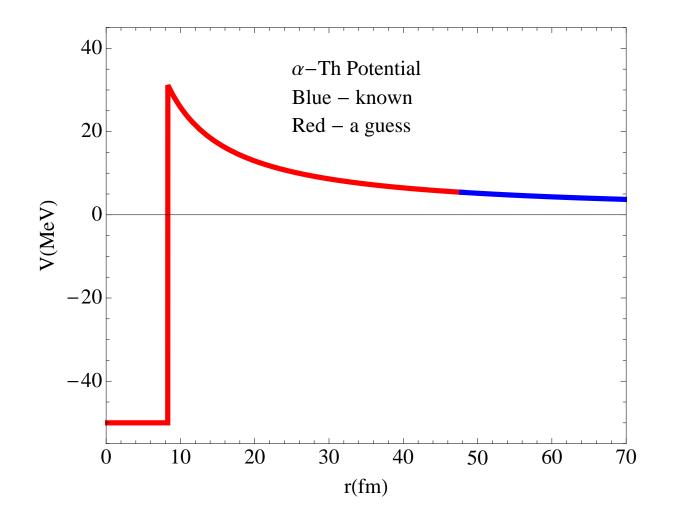
Rutherford Scattering Results



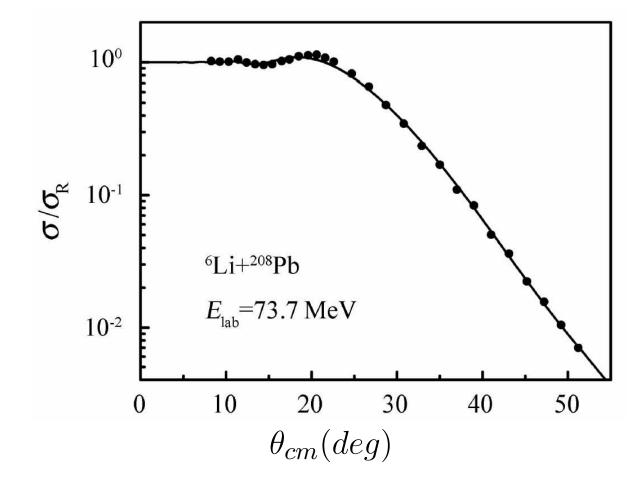
What does this say about the ${}_{2}^{4}\text{He} - {}_{90}^{234}$ Th potential energy?

Actual Rutherford Scattering Results

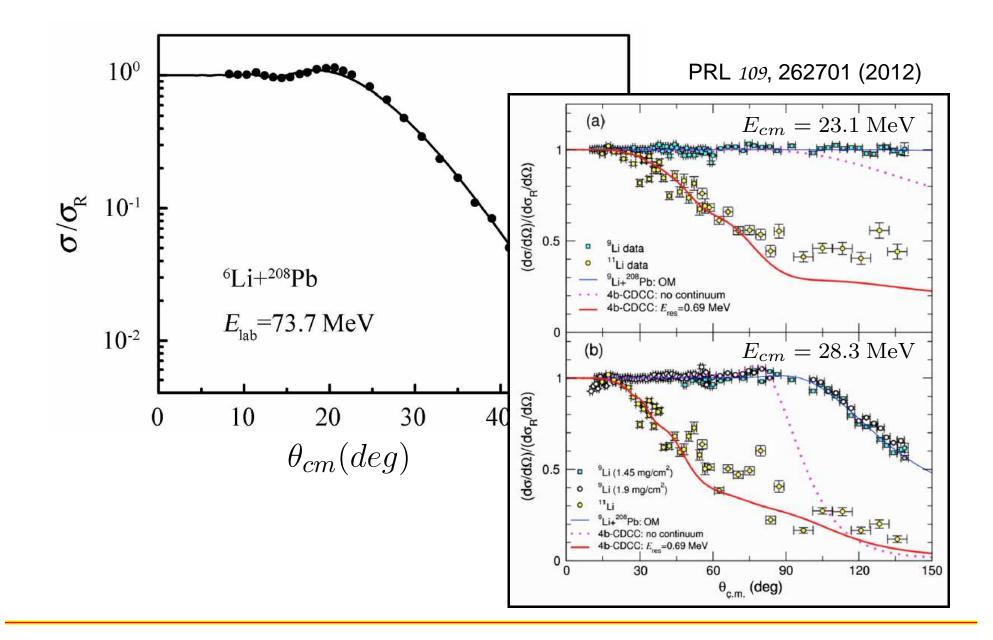




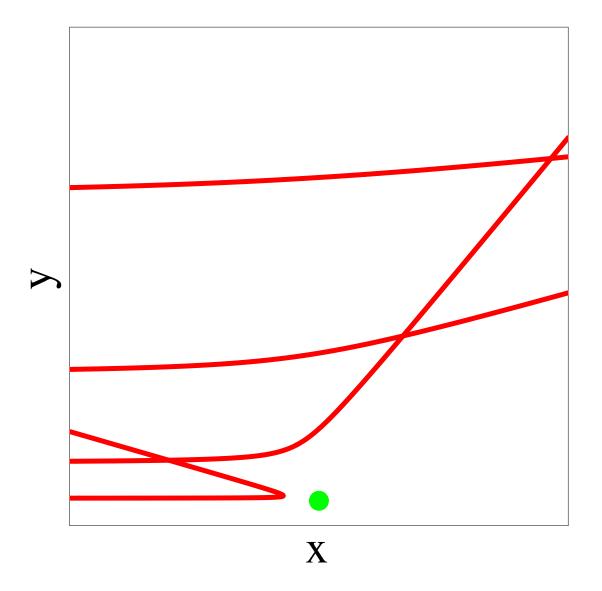
Measuring the Size of the Nucleus

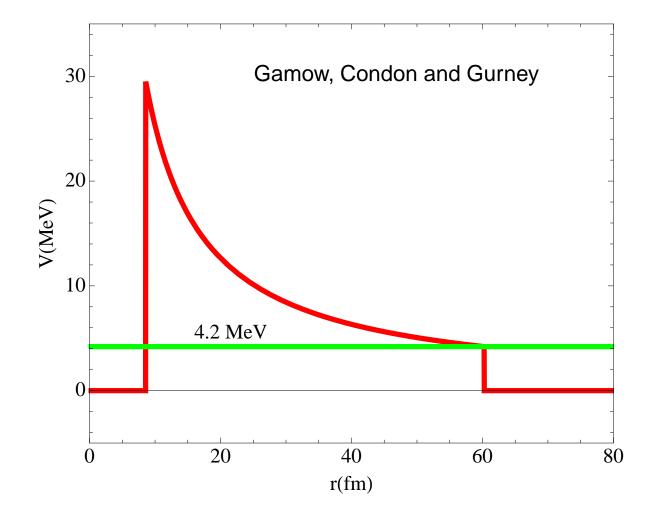


Measuring the Size of the Nucleus



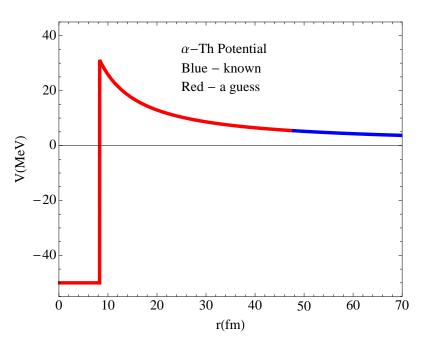
Rutherford Trajectories





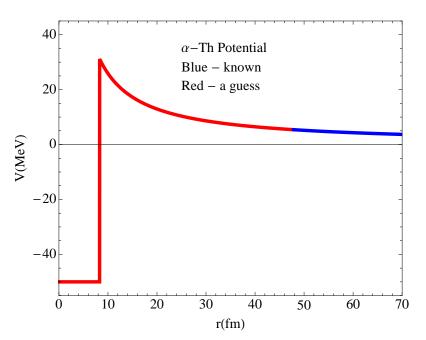
The $\alpha\text{-Decay Puzzle}$

- 1. α -decay of uranium ${}^{238}\text{U} \rightarrow {}^{4}\text{He} + {}^{234}_{90}\text{Th}$ ejects a 4.2-MeV ${}^{4}\text{He}$.
- 2. Used a $5.4 \text{MeV}^{4}\text{He}$ beam to probe the ${}^{4}\text{He} + {}^{234}_{90}\text{Th}$ force.
- It was all Coulomb down to 48 fm.
- The decay ⁴He with energy 4.2 MeV is, apparently, ejected at a distance of 62 fm.
- 5. How can that happen?



The $\alpha\text{-Decay Puzzle}$

- 1. α -decay of uranium ${}^{238}\text{U} \rightarrow {}^{4}\text{He} + {}^{234}_{90}\text{Th}$ ejects a 4.2-MeV ${}^{4}\text{He}$.
- 2. Used a $5.4 \text{MeV}^{4}\text{He}$ beam to probe the ${}^{4}\text{He} + {}^{234}_{90}\text{Th}$ force.
- It was all Coulomb down to 48 fm.
- The decay ⁴He with energy 4.2 MeV is, apparently, ejected at a distance of 62 fm.
- 5. How can that happen?

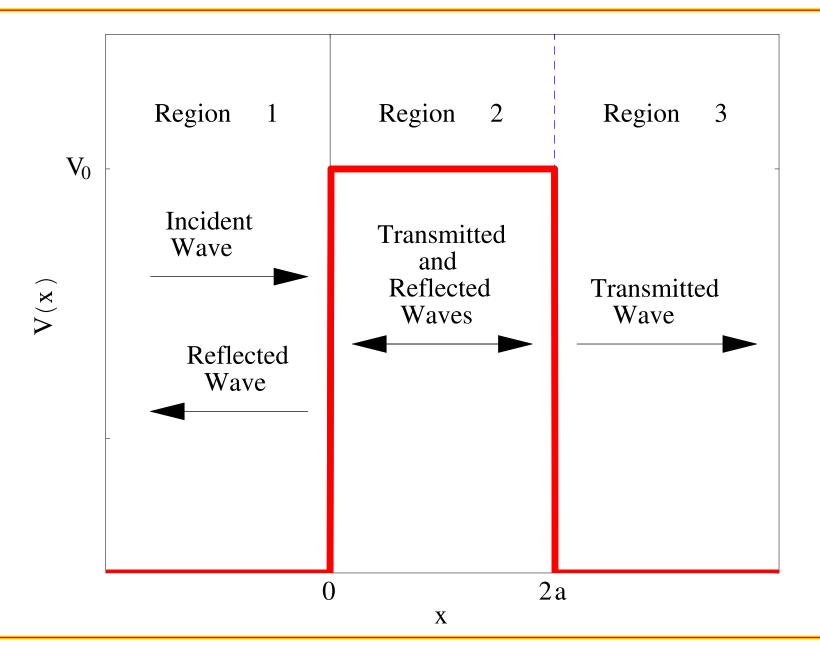


QUANTUM TUNNELING!

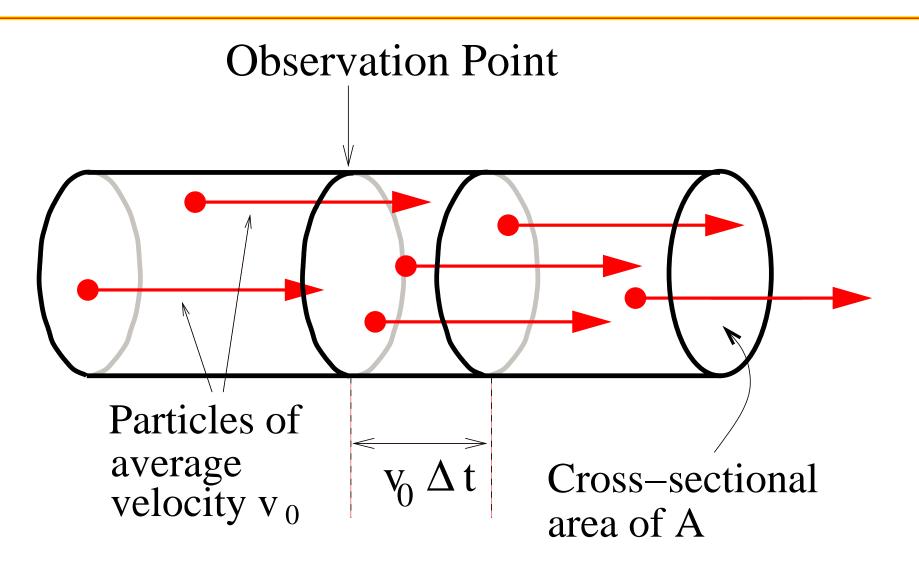
The Plan for Solving the Alpha Decay Puzzle

- 1. Develop the notion of particle flux or flow.
- 2. Solve the Schroedinger equation for the rectangular barrier potential.
- 3. Determine the flux penetrating the barrier.
- 4. Develop the transfer-matrix method using the rectangular barrier results as the starting point.
- 5. Build a model of what happens in a uranium nucleus and predict the lifetime for α -decay.
- 6. Compare with data!

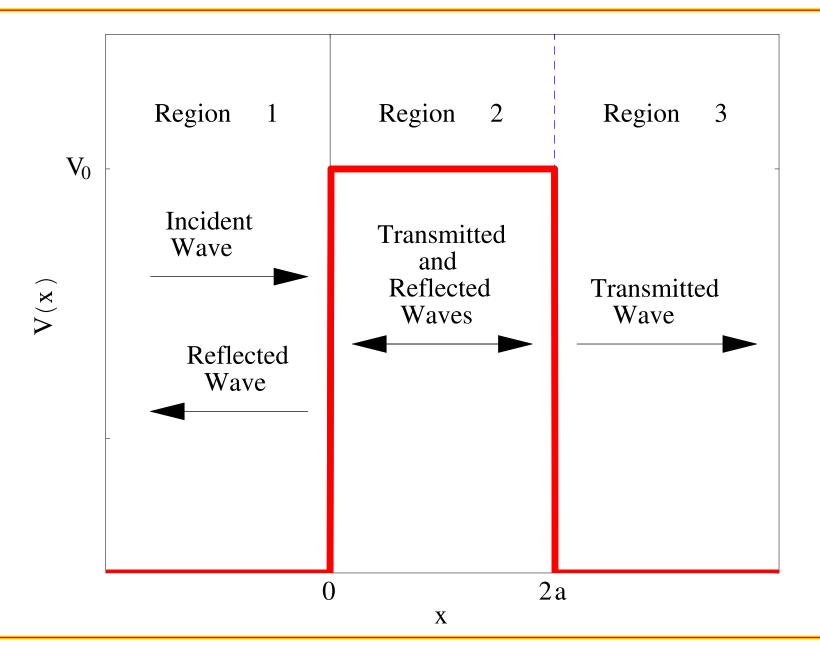
The Rectangular Barrier



Particle Flux in a Beam



The Rectangular Barrier



The Postulates

- 1. The state of a particle is represented by a wave function $|\psi(t)\rangle$ in a Hilbert space.
- 2. The independent variables x and p are represented by Hermitian operators \hat{X} and \hat{P} with the following matrix elements in the eigenbasis of \hat{X}

$$\langle x|\hat{X}|x'\rangle = x\delta(x-x') \qquad \langle x|\hat{P}|x'\rangle = x\delta'(x-x')$$

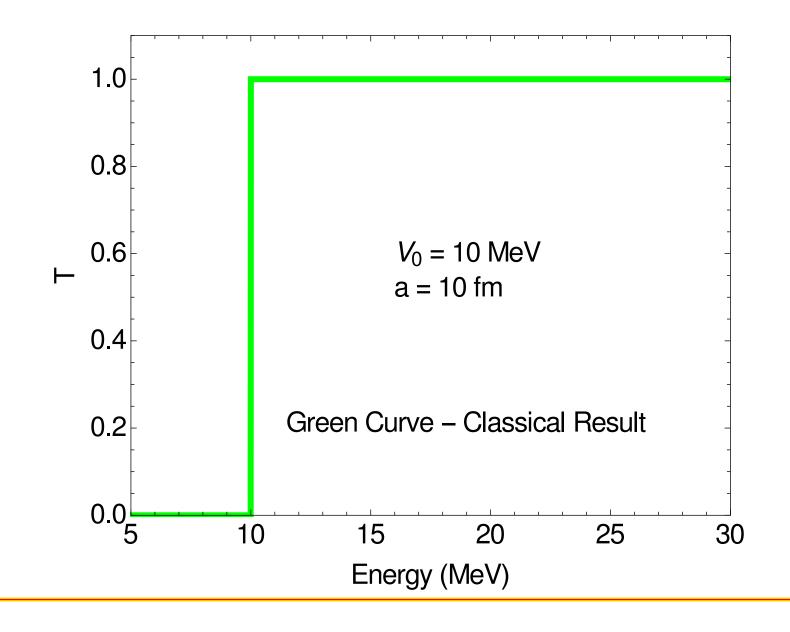
The operators corresponding to dependent variables $\omega(x,p)$ are given Hermitian operators $\Omega(\hat{X}, \hat{P}) = \omega(x \to \hat{X}, p \to \hat{P})$.

- 3. If the particle is in a state $|\psi\rangle$ measurement of the variable Ω will yield one of the eigenvalues ω with probability $P(\omega) = |\langle \omega | \psi \rangle|^2$. The state of the system will change from $|\psi\rangle$ to $|\omega\rangle$.
- 4. The state vector $|\psi(t)\rangle$ obeys the Schroedinger equation

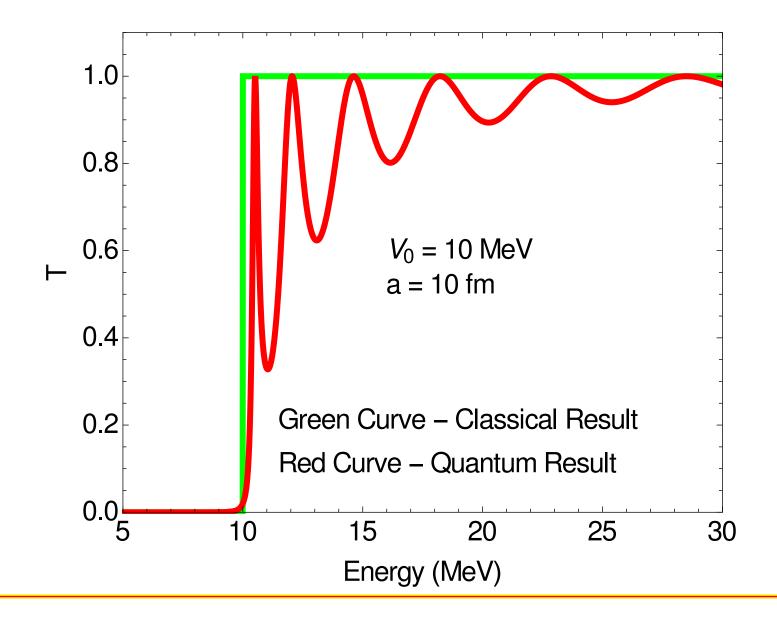
$$i\hbar\frac{d}{dt}\psi(t)=\hat{H}\left|\psi(t)\right\rangle$$

where $\hat{H}(\hat{X}, \hat{P}) = \mathcal{H}(x \to \hat{X}, p \to \hat{P})$ is the quantum Hamiltonian operator and \mathcal{H} is the corresponding classical problem.

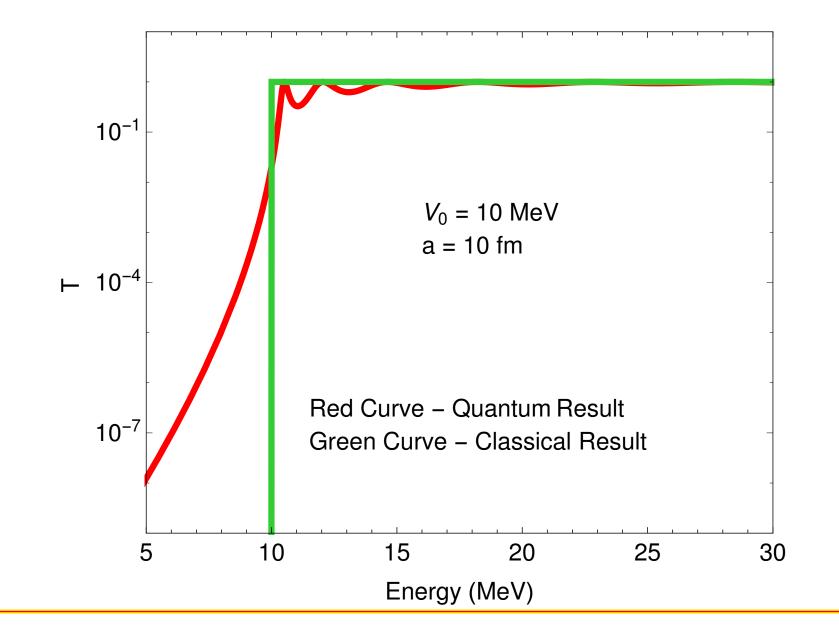
Quantum Tunneling



Quantum Tunneling



Quantum Tunneling



Hint for Shankar 5.4.2.a

Exercise 5.4.2. (a)* Calculate R and T for scattering off a potential $V(x) = V_0 a \delta(x)$. (b) Do the same for the case V=0 for |x| > a and $V=V_0$ for |x| < a. Assume that the energy is positive but less than V_0 .

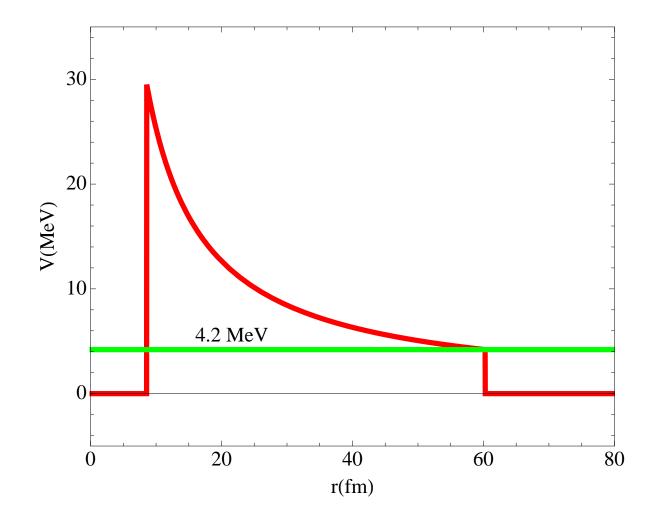
The fundamental property of the Dirac delta function is the following.

$$\int_{-\infty}^{\infty} f(x)\delta(x-a)dx = f(a) = \int_{a-\epsilon}^{a+\epsilon} f(x)\delta(x-a)dx \qquad \epsilon > 0$$

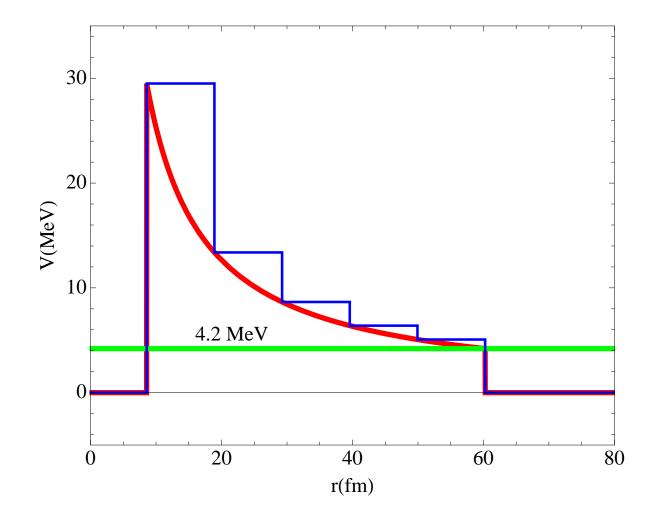
The Dirac delta function can be 'represented' by test functions that have the property defined above in the appropriate limit.

$$\delta(x) = \lim_{\sigma \to 0} \frac{1}{\sqrt{2\pi\sigma}} e^{-x^2/2\sigma^2}$$

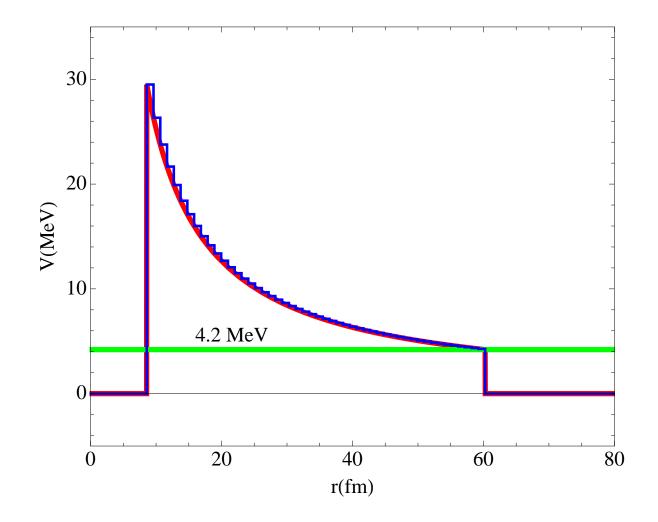
The Transfer-Matrix Solution



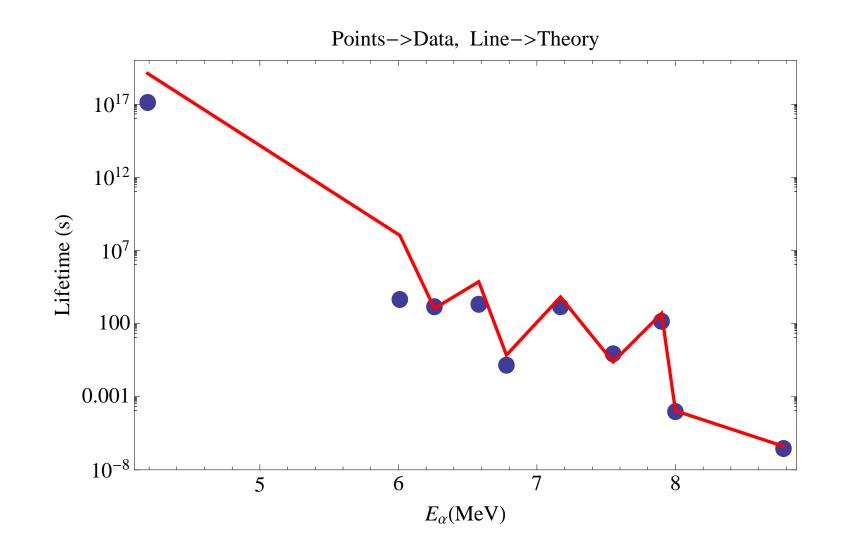
The Transfer-Matrix Solution



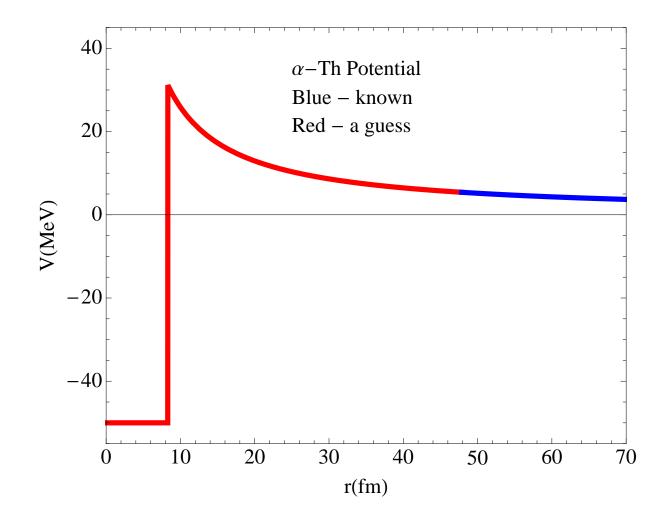
The Transfer-Matrix Solution



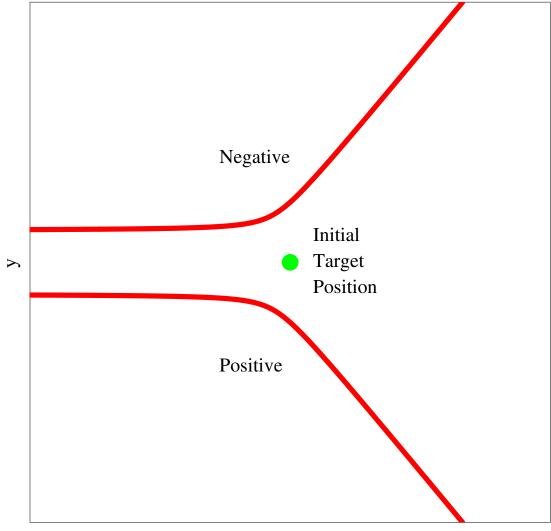
Results



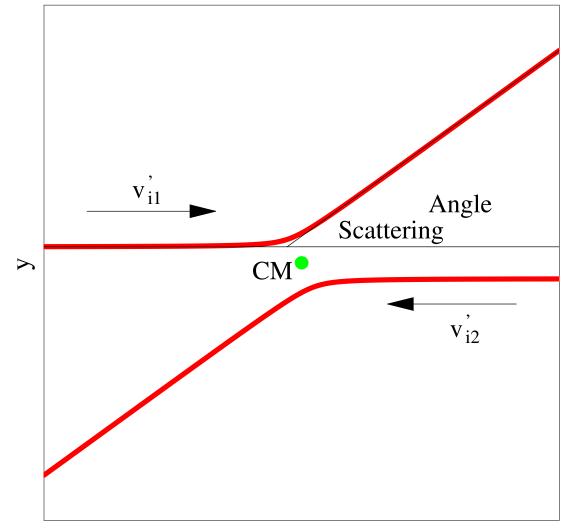
Coordinates



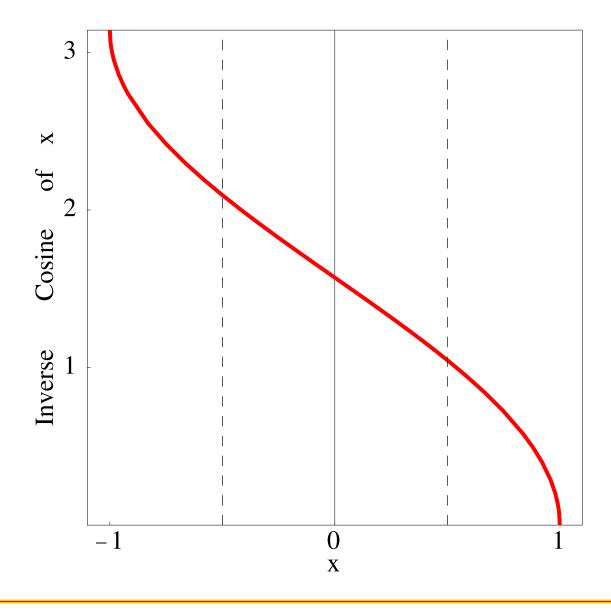
Choosing the Sign



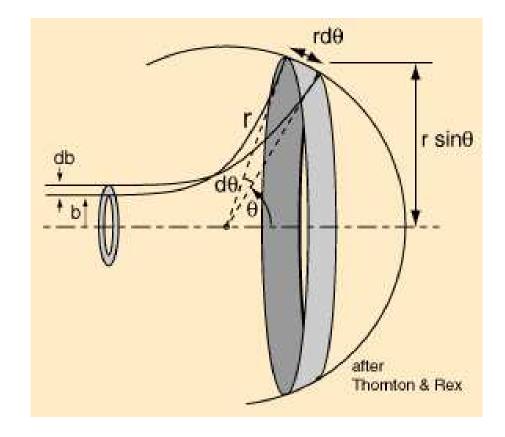
Center-of-Mass Rutherford Trajectories



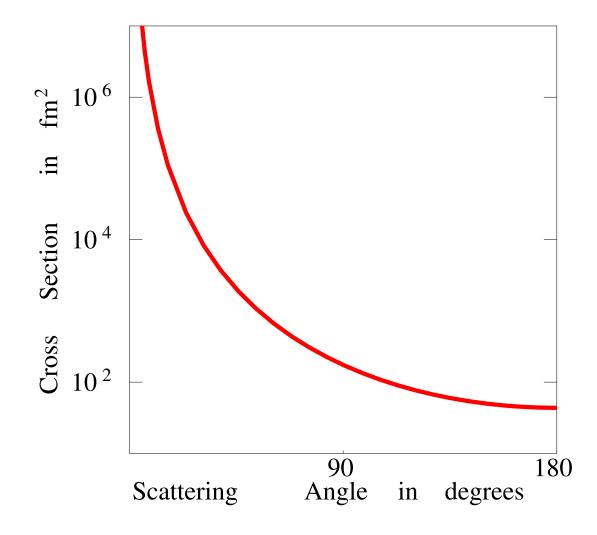
The Inverse Cosine



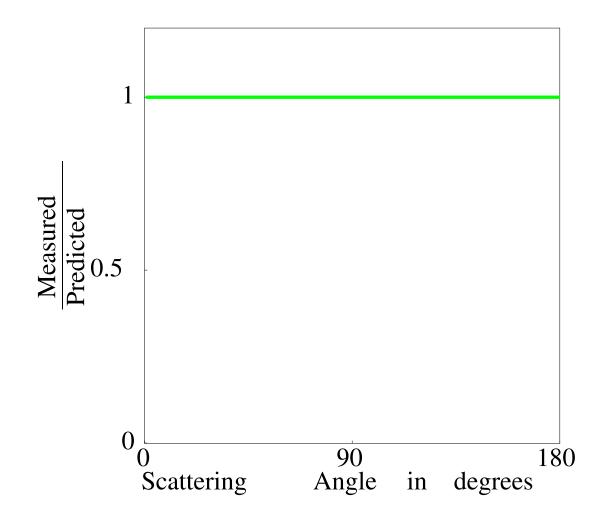
The Differential Cross Section



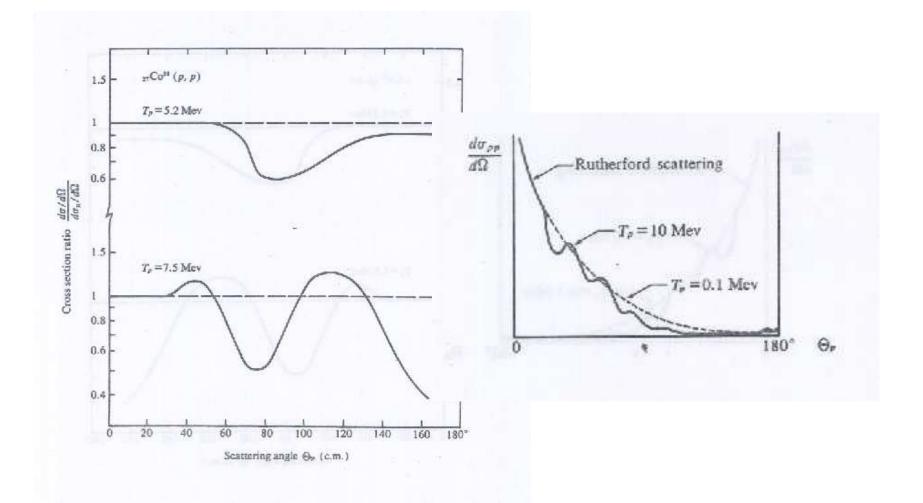
Predicted Differential Cross Section for $^{4}\text{He} - \text{Au}$



Measured Differential Cross Section for ${}^{4}\text{He} - \text{Au}$



The Evidence



The Evidence

