The Postulates

- 1. Each physical, measurable quantity, A, has a corresponding operator, \hat{A} , that satisfies the eigenvalue equation $\hat{A} \phi = a\phi$ and measuring that quantity yields the eigenvalues of \hat{A} .
- 2. Measurement of the observable A leaves the system in a state that is an eigenfunction of \hat{A} .
- 3. The state of a system is represented by a wave function Ψ which is continuous and differentiable and contains all the information regarding the system. The average value of any physical observable A is determined by $\langle A \rangle = \int_{all \ space} \Psi^* \hat{A} \ \Psi d\vec{r}$.
- 4. The time development of the wave function is determined by

$$i\hbar\frac{\partial\Psi(\vec{r},t)}{\partial t} = -\frac{\hbar^2}{2\mu}\nabla^2\Psi(\vec{r},t) + V(\vec{r})\Psi(\vec{r},t)$$

where μ is the reduced mass.