
Physics 309

Solving the Harmonic Oscillator Schroedinger Equation I

1. The general solution to the classical harmonic oscillator is x(t) = A sin(ω0t + δ). Get
an expression for the period of the motion (the time to make one complete oscillation)
in terms of the parameters of the general solution. How is this result related to the
frequency?

2. A 50−g mass connected to a spring of force constant 35 N/m oscillates on a horizontal,
frictionless surface with an amplitude of 4.0 cm. Find (a) the total energy of the system
and (b) the speed of the mass when the displacement is 1.0 cm. When the displacement
is 3.0 cm, find (c) the kinetic energy and (d) the potential energy.

3. A car with bad shock absorbers bounces up and down with a period of 1.5 s after
hitting a bump. The car has a mass of 1500 kg and is supported by four springs of
equal force constant k. What is k?

4. A mass m is oscillating freely on a vertical spring. When m = 0.810 kg, the period is
0.910 s. An unknown mass on the same spring has a period of 1.16 s. What is the
spring constant k and the unknown mass.

5. A 1.0 kg cube oscillates horizontally on the end of
a spring like the one shown here. The extreme dis-
placement of the mass as it oscillates is 0.10 m and
its period of oscillation is 0.50 s. What is the spring
constant? After 27 periods, the cube comes to rest.
What is the energy dissipated by friction?

6. In solving the Schroedinger equation for the harmonic oscillator potential we rewrote
the Schroedinger equation in the form

d2φ

dξ2
+

(
α

β2
− ξ2

)
φ = 0

where ξ = βx, α = 2mE/h̄2 and β =
√
mω0/h̄. What is the asymptotic form of this

differential equation? In other words, what does it look like for large ξ? Show the
asymptotic solution is

|φasymp〉 = Aasympe
−ξ2/2 +Basympe

ξ2/2 .

7. Once we established the form of the asymptotic solution of the harmonic oscillator
problem we made the initial guess that the wave function will be of the form

|φ(ξ)〉 = Ae−ξ
2/2H(ξ)

where ξ = βx, H(ξ) is some, as-yet-to-be-determined function, and A is a normalization
constant. This guess was made in the hope of ensuring the finiteness of the wave
function far outside the range of the potential. Starting from this form of the wave



function and the Schroedinger equation, show the new differential equation we must
solve is
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dξ2
− 2ξ

dH(ξ)
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+
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− 1

)
H(ξ) = 0

where

α =
2mE

h̄2
and β2 =

2πmν0
h̄

=
mω0

h̄
.

8. Recall our old friends, Newton’s Second Law, ~F = m~a and Hooke’s Law, |~F | = −Kx
which can be combined to form a differential equation

m
d2x

dt2
= −Kx or

d2x

dt2
= −ω2

0x

where ω0 =
√

K
m

. The solutions of this equation have, of course, been known to us
since our earliest childhood, but now solve this differential equation using the Method
of Frobenius and make the appropriate choices of the leading coefficients to obtain
those well known solutions.

9. If one makes an astute choice of units then the first two harmonic oscillator wave
functions can be written as:

ψ0 = A0e
−ξ2/2 and ψ1 = A1ξe

−ξ2/2

where
ξ = βx , β2 =

mω0

h̄
.

Find the normalization constants, A0 and A1.

10. The energy eigenvalues of a molecule indicate the molecule is a one-dimensional har-
monic oscillator. In going from the second excited state to the first excited state, it
emits a photon of energy hν = 0.1 eV . Assuming that the oscillating portion of the
molecule is a proton, calculate the probability that a proton in the first excited state is
at a distance from the origin that would be forbidden to it by classical mechanics. You
may have difficulty performing the integration necessary for the final answer. In that
case, express that answer in terms of the unsolved integral and propose some method
for calculating it. A special prize awaits anyone who can solve the integral.

11. After we first found the series solution to the harmonic oscillator potential we discovered
a problem. When subjected to the ratio test our series converged to 2/n for large n,
where n is the term in the series. The claim was then made that this behavior is
consistent with the behavior of the function eu

2
at large u. This feature implies the

wave function blows up at large distances from the equilibrium point. Show that the
Taylor series expansion of the function eu

2
about the origin has the following form.

eu
2

= 1 + u2 +
u4

2!
+ · · ·+ un

(n/2)!
+ · · ·

Next, use the ratio test to show this series converges to 2/n for large u.



12. Recall again our old friend, Newton’s Second Law, ~F = m~a and perhaps a new one
in the drag force equation Fd = −bv which can be combined to form a differential
equation in the velocity for an object falling straight down

m
dv

dt
= bv −mg or

dv

dt
− b

m
v + g = 0

where b is a parameter describing the drag force, m is the mass and g is the acceleration
of gravity. Solve this differential equation using the Method of Frobenius (the power
series method) and generate the recursion relationship that relates different coefficients
to one another.


