
Physics 309 - Solving the Three Dimensional Schroedinger Equation 1

1. A water molecule consists of an oxygen atom with two hydrogen atoms bound to it.
The angle between the two bonds is θ = 106◦. If the bonds are 1.0 Å long, then where
is the center of mass?

2. An airplane of mass m = 12000 kg flies over the Midwestern plains at an altitude
h = 4.3 km with velocity v = 175 m/s west. What is the airplane’s angular momentum
vector relative to a farmer on the ground directly below the plane? Does this value
change as the plane continues its motion in a straight line?

3. In studying rotational motion, we take advantage of the center-of-mass system to make
life easier. Consider the two-particle system shown in the figure including the center-
of-mass vector R. For convenience we will place our origin at the center-of-mass of the
system (R = 0). Show the classical mechanical energy of the two-particle system in
the center-of-mass frame can be written as
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and r is the relative coordinate between the two particles as shown in the figure. Notice
that V (r) depends only on the relative coordinate.

4. The three-dimensional Schroedinger equation can be written in spherical coordinates
as
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ψ + V (r)ψ = Eψ

where µ is the reduced mass. We want to show that the Schroedinger equation is
separable, i.e., that it can be broken down into a different equation that each of the
three coordinates, r, θ, and φ, must satisfy. To do this assume that the wave function
is of the form

ψ = R(r)Θ(θ)Φ(φ)

and rearrange the Schroedinger equation to obtain the following result.
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5. Starting with the result from the previous problem show
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where Θ is the solution to the angular part and A is a new separation constant.

6. Make the substitution z = cos θ in the equation from the previous problem and show
that z must satisfy Legendre’s differential equation
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7. Now consider the result from Problem 5. For the case m = 0 what is the recursion
relationship for the series solution to Legendre’s differential equation? In other words,
let Θ =

∑
akz

k, set m = 0, and show that Legendre’s differential equation leads to
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What must the constant A equal if we want to terminate the series at some arbitrary
value of k = l?


