Physics 309 - Solving the Three Dimensional Schroedinger Equation 1

- 1. A water molecule consists of an oxygen atom with two hydrogen atoms bound to it. The angle between the two bonds is $\theta = 106^{\circ}$. If the bonds are 1.0 Å long, then where is the center of mass?
- 2. An airplane of mass $m = 12000 \; kq$ flies over the Midwestern plains at an altitude $h = 4.3 \ km$ with velocity $v = 175 \ m/s$ west. What is the airplane's angular momentum vector relative to a farmer on the ground directly below the plane? Does this value change as the plane continues its motion in a straight line?
- 3. In studying rotational motion, we take advantage of the center-of-mass system to make life easier. Consider the two-particle system shown in the figure including the centerof-mass vector R. For convenience we will place our origin at the center-of-mass of the system $(R = 0)$. Show the classical mechanical energy of the two-particle system in the center-of-mass frame can be written as

$$
E_{cm} = \frac{1}{2}\mu v^2 + V(r) \quad \text{where} \quad \mu = \frac{m_1 m_2}{m_1 + m_2} \quad \text{and} \quad v = \frac{dr}{dt}
$$

and r is the relative coordinate between the two particles as shown in the figure. Notice that $V(r)$ depends only on the relative coordinate.

4. The three-dimensional Schroedinger equation can be written in spherical coordinates as

$$
\frac{-\hbar^2}{2\mu} \left\{ \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right\} \psi + V(r) \psi = E \psi
$$

where μ is the reduced mass. We want to show that the Schroedinger equation is separable, i.e., that it can be broken down into a different equation that each of the three coordinates, r, θ , and ϕ , must satisfy. To do this assume that the wave function is of the form

$$
\psi = R(r)\Theta(\theta)\Phi(\phi)
$$

and rearrange the Schroedinger equation to obtain the following result.

$$
-\left\{\frac{\sin^2\theta}{R}\frac{\partial}{\partial r}\left(r^2\frac{\partial R}{\partial r}\right)+\frac{\sin\theta}{\Theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial \Theta}{\partial \theta}\right)+\frac{2\mu r^2\sin^2\theta}{\hbar^2}(E-V)\right\}=\frac{1}{\Phi}\frac{\partial^2\Phi}{\partial\phi^2}
$$

5. Starting with the result from the previous problem show

$$
-\frac{1}{\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) + \frac{m^2}{\sin^2\theta}\Theta = A\Theta
$$

where Θ is the solution to the angular part and A is a new separation constant.

6. Make the substitution $z = \cos \theta$ in the equation from the previous problem and show that z must satisfy Legendre's differential equation

$$
(1-z^2)\frac{d^2\Theta}{dz^2} - 2z\frac{d\Theta}{dz} + \left(A - \frac{m^2}{1-z^2}\right)\Theta = 0
$$

7. Now consider the result from Problem 5. For the case $m = 0$ what is the recursion relationship for the series solution to Legendre's differential equation? In other words, let $\Theta = \sum a_k z^k$, set $m = 0$, and show that Legendre's differential equation leads to

$$
a_{k+2} = \frac{k(k+1) - A}{(k+2)(k+1)} a_k.
$$

What must the constant A equal if we want to terminate the series at some arbitrary value of $k = l$?