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1 Introduction

The inquisition for the Higgs particle is the current manifestation of mankind’s yearning to
understand gravitation. Over four hundred years ago Isaac Newton performed research with
macroscopic and astronomical objects to build the basis of gravitational theory. In 1665, at
age 23, Newton “showed that the force that holds the Moon in its orbit is the same force
that makes an apple fall.”[2] In his proposition is a force law known now as Newton’s Law
of Gravitation:

FG = G
m1m2

r2
(1)

The law states that every body attracts every other body with a force whose magnitude
is given by equation 1. This force includes a constant G called the universal constant of
gravitation.

Early tests of Newton’s law involved measuring the “Attraction of Mountains” since very
large masses were required to produce an appreciable deflection of measurement equipment
available at the time. This is a consequence of the extreme weakness of the gravitational force
at the human scale. In comparison to one’s attraction to Earth, forces due to nearby masses
are inconsequential. With this in mind, a very delicate piece of equipment was designed
and built by the Revd. John Michell that could measure very weak forces. Unfortunately
Michell died before he could use his own design in an experiment.

Despite its name, Cavendish’s experiment was made possible through the work of as-
tronomers, geologists, mathematicians and other scientists that came before him. To his
credit, Henry Cavendish was the diligent chap that obtained the final result of the exper-
iment; Cavendish completed the measurement in 1798, five years after Michell’s death.[1]
His diligence in experimental techniques and error determinations has lead some to call
this experiment the “first modern physics experiment.”[4] As a testament to this claim,
Cavendish’s results from this experiment were not improved for over a century.

2 Experimental Apparatus

The apparatus used in our experiment is much like that which was used by Cavendish; we
use a torsion balance with an optical method of measurement. In our case the optics are
improved (incorporating a He-Ne laser) and the read out is supplemented by a PC-based
DAQ system. We also improved the isolation of our experiment with an active vibration
damping system.

2.1 Torsion Balance and Readout

Central to the experiment is the torsion balance. The balance used in our experiment is
pictured in figure 1. This design incorporates clever use of symmetry to prevent the Earth’s
gravitational force from adversely affecting its measurement. It is extremely sensitive to
torsional forces; since it incorporates a tungsten thread as its torsion element, it offers only
a very faint resistance to movement. The torsion element is also sensitive to environmental
conditions including temperature and air flow. To protect the balance from external contact
and air flow it is encased in an aluminum structure with removable glass windows.
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Our balance is fundamentally the same as that which was used in Cavendish’s experi-
ment: a suspended boom with two small lead spheres in axial alignment with a boom with
two larger lead spheres. The boom with the large weights is fixed along two axes to prevent
any pendulous movements; this outer boom can only be rotated along the same axis as the
suspended boom. The suspended boom hangs freely from ∼6 cm of tungsten thread. This
thread is carefully tied to upper and lower posts, each allowing for some adjustment. The
upper post allows one to raise and lower the inner boom, and rotate it along the vertical
axis. The lower post slides and rotates within a groove in the suspended boom.

Our balance allows two different methods of readout. A small mirror is fixed to the center
post of the balance for use as an “optical lever.” A symmetric differential capacitive sensor
is built into the base of our balance to provide an analog readout. This output provides a
signal whose voltage varies as the inner balance rotates. The sensor is especially resistant
to pendulous modes (see figure 2 for a graphical explanation) of motion and electrical noise.

An external piece of DAQ hardware (also pictured in figure 1) provides power to the
readout electronics and allows for zero-adjustment of the signal from the balance. This
hardware feeds the signal to a DAQ card in a PC that records the voltage in two second
intervals. Measurements are output in a text file that is analyzed with statistical software
including ROOT and Gnuplot.

2.2 Vibration Isolation Table

We employ a vibration isolation table in this experiment to minimize errors in measurement
caused by forces external to our apparatus. We also wanted to minimize movements in the
suspended boom, as our theoretical model of this experiment does not account for such
motion. The table also provides us (once properly adjusted) with a very uniform and level
surface. This also improves our experiment’s correlation to our theoretical model, which
assumes the apparatus is perfectly aligned with the horizon.

The table is a large aluminum slab that rests on four pneumatic pistons. Attached to
each piston is a small lever with an adjustable foot that rests against the bottom of the slab.
As the slab moves up and down, the lever tracks its movement and adjusts the valve that
regulates the corresponding piston’s internal pressure. An air compressor with reservoir
sits adjacent to the table, sourcing the levelling pistons. The compressor has an automatic
regulator that runs the pump as needed to maintain sufficient pressure in the reservoir.

2.3 Laser and Optics

A 0.6 mW Helium-Neon laser made by Uniphase (Model 1508) was incorporated to produce
an “optical lever” arrangement. Figure 3 illustrates our arrangement; note the error of +/-
0.7 cm in the measurements. Our primary concern during our design phase was accuracy of
measurement. We aimed to minimize the laser-mirror distance to minimize effects of beam
spread, and maximize the mirror-yardstick distance to maximize our angular resolution.
Another factor minimizing beam spread was a small convex lens held in position by a lab
stand. A jack stand was used to center the laser beam within the small mirror on the center
post (seen in figure 2).
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2.4 Other Measurements

We weighed the lead spheres with a triple-beam balance and measured their diameters with
a vernier caliper. The caliper was also used to measure dimensions of the balance. The
yardstick in figure 3 is fixed to the wall with double-stick tape, and a thin strip of black
masking tape is affixed to the portion of the ruler on which the laser beam is incident. The
use of black tape reduced the glare from the incident beam, allowing for (slightly) more
precise measurement.

3 Procedure

3.1 Setup

Our first task was to ensure our apparatus had a level surface on which to rest. We opened
the air valves to all of the pistons under the isolation table and allowed them to fill until
the adjustment lever stopped the flow. We then used a small circular level to check the
pitch of the table at various locations. After adjusting the feet on the levers, we achieved
a uniformly level table. We set up our equipment as in figure 3 and left it alone overnight
so all motion within our balance ceased. The next day we levelled our torsion balance via
adjustable feet on the balance’s base. The circular level indicated we had a level balance,
now assumed to be an the same plane as our table.

Upon further inspection, we found the suspended boom was not properly aligned with
the center post. Using a small pin, John pushed the boom from side to side through small
holes in either side of our balance’s enclosure. After some work we left the system alone for
another night. Later, we verified the suspended boom appeared to be parallel with the table,
but the boom’s equilibrium point was at some large angle to the glass walls of the balance.
The upper support was carefully adjusted several times before we achieved a centered boom
(note our “centering” here is not exact; this was a difficult task and we allowed for about 5
degrees of error in our determination of “center”). We noted the mirror on the center post
was not parallel to the boom, so we corrected for this misalignment by rotating the entire
balance. After more settling time we verified we had achieved our intended beam path.

After affixing the yardstick to the far wall and masking it with black tape, we attempted
to minimize the beam spot size (to aid measurement) by incorporating a convex lens in the
stationary portion of the beam. We avoided putting the lens in the moving portion of the
beam to minimize errors caused by optical aberration. While adjusting the position of the
lens in the beam, we noticed the spot size at the yardstick shrank as the lens approached
the balance. We could only move the lens a certain amount, however, since at some point
the reflected beam strikes the edge of our lens. Our final configuration was measured and
the results appear as dimensions in our schematic (figure 3).

3.2 Measurement

Our DAQ software was simple to operate, although its interface was far from intuitive. We
simply turned the software “on” and let it run, and it would record the signal level from our
balance once every two seconds. We placed the large masses in position I (see figure 4 for a
plan view of the positions) and recorded data as the torsion balance settled into equilibrium
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over a 24 hour period. As shown in figure 6, the equilibrium position of the balance changed
over time. With this in mind we decided to record only about an hour of data for each
adjustment of the large masses.

In our final data run we performed two measurements in position II and one measurement
in position I. Each measurement began with a “swap” in position of the large masses (from
I to II or II to I) and ended about an hour later. Before swapping the large masses we noted
the position of the laser beam by making a pencil mark where the center of the beam was
incident on the yardstick. We later used a vernier caliper to measure the distance between
our marks, as well as the apparent size of the laser beam.

At the conclusion of our balance measurements we recorded the dimensions of the balance
and masses for use in the determination of our final result. Since the masses were not
uniformly spherical we took several diameter measurements for each sphere and used an
average result in our calculations. Some dimensions could not be directly measured with
the caliper (i.e. with the jaws of the caliper touching the apparatus), so we held the caliper
up to the dimension in question and aligned the jaws with the apparatus by “eyeball.”
This introduced some uncertainty due to parallax; we accounted for our gross measurement
technique in our determination of measurement uncertainty.

4 Results

An enormous amount of raw data (over 6,300 data points in our final run) was collected
during the course of our experiment. To save patience and paper, we present only portions
of raw data that are relevant to our final result. Furthermore our raw data will only appear
in graphical form. Numerical values that appear in the following tables are results of fitting
algorithms or analytical manipulations thereof.

Figure 6 is our first sample of data from the experiment. Shortly after this data was
gathered we made our final data run; see figure 7 for our final results with the balance.
For reference, time “0” in our data set corresponds to November 3, 2004 6:30:09 PM PST.
Our measurements of the spheres’ diameters appear in table 1 and the rest of our balance’s
dimensions are shown in table 2.

5 Analysis and Interpretation

5.1 Theory

The theoretical model of our experiment include many assumptions, made to simplify the
equations used in determining G:

• Only two equal and opposite forces are acting to torque our balance’s suspended boom.
There is no drag or friction experienced within the balance.

• Our balance is perfectly symmetric:

– The large and small masses are perfectly spherical.

– The large spheres have identical masses; the small spheres have identical masses.
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– The separation between the large and small spheres is identical for both equilib-
rium positions (I and II) and for both sides of our balance.

– The large spheres are positioned such that the lever arm of its attractive force is
at a right angle to the boom and in a plane perpendicular to the thread.

– The suspended boom moves only in a plane perpendicular to the thread.

• The suspended boom is parallel to the glass windows when the sphere separation
distance is determined.

• We can neglect the gravitational and inertial effects of the suspended boom and center
post.

• We can neglect the gravitational effect of the outer boom.

• We can neglect any other external gravitational effects, such as the attractive force of
the nearby experimentalists.

Correction factors can be derived to account for all of our assumptions, however, these
factors can be negligible compared to the accuracy of our measurements. We will use only
one correction factor in our determination of G.

As described above, we have two forces acting within our balance: the attraction of the
nearby large mass, and the restoring force of the torqued thread. Individually, these forces
are:

τG = 2FGd (2)

τκ = −κθ (3)

In opposition, these forces equate as τG = −τκ. Including equation 1 this gives us the
steady-state equation

κθ = 2dG
mlms

r2
(4)

which we can rearrange to determine G. We also define b as the sphere separation distance
(see figure 4).

G =
κθb2

2dmlms

(5)

The two unknowns in this equation are κ and θ. We use geometrical analysis to reduce
θ to a linear variable (see figure 5): making the small-angle approximation θ ≈ tanθ we
achieve a relation to the beam displacement ∆S. Keep in mind the θ we observe is actually
twice the rotation angle of the boom, due to the law of reflection.

2θ =
∆S

2
L or θ =

∆S

4L
(6)

The torsional spring constant κ is determined from the solution to classical mechanics’
infamous simple harmonic oscillator problem:

ω0 =
2π

T0
=

√

κ

I
(7)
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As stated in our assumptions, we will model the suspended boom as massless and only
consider the small spheres in determining I.

I = 2ms(d
2 +

2

5
r2) (8)

Combining equations 7 and 8 and solving for κ, we achieve our spring constant:

κ = 2ms(d
2 +

2

5
r2)ω2

0 (9)

It should be noted that our balance is a damped simple harmonic oscillator; its behavior is
modeled with the following solution:

V (t) = Ae−β(t−t0)cos(ω1(t − t0) − δ) + C (10)

We define an offset time t0 at which oscillation begins, and a phase factor δ. Since our
damping is small (<5%, see table 3 for an example) we make the approximation: [6]

ω1 =
√

ω2
0 − β2

≈ ω0 (11)

With this approximation we can use our experimental results immediately in determining
G, otherwise, we would have to incorporate another correction factor. A quick calculation
shows this factor offers a correction of less than one part in 2000 (using data from table 3).

We have now reduced our determination of G to a set of experimentally obtainable
parameters: ω0 and ∆S. The rest of the variables in our experiment are obtained simply
with a ruler or caliper. Collecting equations 5, 6 and 9 and solving for G we produce our
first approximation:

G = ∆Sω2
0b2 d2 + 2

5r2

4Lmld
(12)

As promised we introduce a correction factor to account for the opposite large sphere’s
attraction to each small sphere. In effect, this correction reduces the attraction between a
small sphere and the adjacent large sphere by a factor γ. Using equation 1 and a little more
geometry we determine the reduced attraction:

Fnet = Fg − γFg = Fg(1 − γ) where γ =
b3

(4d2 + b2)
3

2

(13)

We use this factor to adjust our first approximation thusly:

G1 =
G

1 − γ
(14)

Errors are propagated through our analysis using a standard error combination tech-
nique:

σ2
G =

n
∑

i=1

(
∂G

∂xi

)2σ2
i (15)

In cases where data is averaged, the errors are added in quadrature:

σx̄ = σ2
x1

+ σ2
x2

+ . . . (16)
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5.2 Experiment

Some trial and error was needed to fit our damped S.H.O. model (equation 10) to our exper-
imental data as the data contained additional, unmodeled influences. We saw nonuniform
acceleration and deceleration of the boom, and small (∼5%) impulses that affected the am-
plitude of oscillation during its expected decay. We had to cut our data down to a few
oscillations, beginning at least one-half period after the beginning of the boom’s movement.
See figures 8, 9 and 10 for the data that survived our cuts. Gnuplot was used to fit equa-
tion 10 to this data, and good results were achieved. Looking at the fit results in tables 3, 4
and 5, we saw small fractional errors in all parameters, comparable to the fractional errors
in our dimensional measurements (table 2). By this criteria (small fractional errors) and
visual inspection of our fits (to ensure errors were not systematic), we concluded our fits
were acceptable for use in determining G. I could not figure out how to produce χ2 using
Gnuplot and didn’t take the time to do it “by hand.”

We averaged our repeated measurements (rl, rs, ml, ms, ω0) and collected them in
table 6 with their respective uncertainties. We noted our tick marks accurately represented
(as best as our eyeballs could determine) the equilibrium positions of the balance, measured
their separation with a vernier caliper, and called it ∆S. We now have the data in hand
to “plug and chug” through to our result, using equation 12. Careful error analysis reveals
the differential error on each parameter (each term in equation 15); see table 7 to verify our
largest errors came from uncertainties in measuring the beam spot displacement ∆S and
the separation of the large and small spheres b. These were indeed difficult measurements
to make!

Before corrections we achieved the result:

G = 10.72 · 10−11 + / − 2.35 · 10−11 m3

kg s2
(17)

This is a 21.9% fractional error. Including our correction (equation 14) we achieve our
second result:

G1 = 11.09 · 10−11 m3

kg s2
(18)

Since the correction uses terms already included in our determination of σG, we assume our
corrected result has the same error.

The accepted value of G is 6.67300 ·10−11m3kg−1s−2. Our value is 60.6% higher than
this value, and our lower error bound is still 25.4% higher. Our inability to even “cover”
our expected value is puzzling, given our generous measurement uncertainties.

6 Conclusion

This experiment provides many opportunities for error, and the theory requires many ac-
curate measurements to produce a decent result. As the setup was presented to us (in
shambles), we could not achieve the accuracy required to come even close to the 1% result
featured in the manual for our torsion balance.[5] Throughout the setup and measurement
process, we found ways the experiment could be improved:
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• Place the yardstick further away from the table (perhaps across the hall)to achieve a
more accurate measurement of ∆S.

• Add a linear amplifier to the DAQ system to provide sensor measurements with better
precision.

• Mechanically isolate the vibration table from the air compressor.

• Regulate the temperature in the lab to prevent “equilibrium drift.”

• Use a different lens to achieve a smaller laser spot.

• Fix the suspended boom to the center post such that the mirror is parallel to the
boom.

...and the list goes on. We could also have been more diligent in our analysis, avoiding
approximations to prevent further inaccuracies in our final result. Such diligence, however,
is only called for when our measurement errors compare to these approximation errors
(fractions of a percent).

Sadly, we were not given enough time to implement any of these improvements and
repeat our measurements. Since our access to the lab was limited and the setup required
long waiting periods while equilibrium was achieved, we had few “windows of opportunity”
in which to perform the actual experiment. Our poor results are a testament to our limited
resources of time, equipment and experience. Should we repeat this experiment, we are
confident that better accuracy can be achieved in all measurements. This experiment was
more of a learning experience than an actual determination of a physical constant.

7 Tables and Figures

Large Large Small Small
sphere 1 sphere 2 sphere 3 sphere 4

(cm) (cm) (cm) (cm)
5.43 5.47 1.36 1.35
5.49 5.48 1.36 1.36
5.46 5.41 1.36 1.36
5.41 5.49 1.36 1.36
5.46 5.46

Table 1: Diameters of the spheres used in our experiment.
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Figure 1: The torsion balance used in our experiment. Source: TEL-Atomic Incorporated

Figure 2: The modes of movement of the inner boom. Source: TEL-Atomic Incorporated
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Vibration

Isolation

Table

10

Convex Lens

Torsion Balance

He−Ne Laser

30.8 cm

45.7 cm

45.7 cm

91.4 cm

Yardstick

61.0 cm 61.0 cm

Figure 3: A schematic diagram of our optical lever arrangement. Our intended beam path is
indicated with a dashed line. All measurements were made with a yardstick and are subject
to an error of +/- 0.7 cm (1/4 inch).
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Figure 4: The positions of the large spheres, with dimensions. Source: PASCO Scientific

Var. Dimension Measurement Uncertainty Units
Beam spot size 3.8 0.2 mm

∆S Beam displacement 3.2 0.2 mm
2 · d Dist. betw. small spheres (OC) 13.3 0.1 cm
b Dist. betw. small and large sphere (horizontal, OC) 4.52 0.2 cm

Dist. betw. small and large sphere (radial, OC) 0 0 cm
Dist. betw. small and large sphere 1.31 0.2 cm
(vertical, top surface to top surface)
Mass of large sphere 1 917.5 0.1 g
Mass of large sphere 2 918.3 0.1 g
Mass of small sphere 3 14.7 0.1 g
Mass of small sphere 4 14.6 0.1 g

Table 2: Dimensions of the balance used in our experiment. “OC” stands for On Center.

Var. Value Absolute Fractional Units
error error

A 0.0191787 0.0002067 1.078% V
β 0.00113951 4.417e-05 3.876% 1

sec
ω1 0.0390873 3.861e-05 0.09878% rad

sec
t0 82700 0 0 sec
δ 1.77528 0.009584 0.5399% rad
C -1.01427 6.119e-05 0.006033% V

Table 3: Parameters of fit in figure 8.
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Figure 5: The dimensions of our optical lever arrangement, in two positions. Source: PASCO

Scientific

Var. Value Absolute Fractional Units
error error

A -0.029903 0.0002861 0.9569% V
β 0.0012693 4.817e-05 3.795% 1

sec
ω1 0.0386047 4.981e-05 0.129% rad

sec
t0 86350 0 0 sec
δ 1.22208 0.0102 0.8344% rad
C -0.98473 9.348e-05 0.009493% V

Table 4: Parameters of fit in figure 9.
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Figure 6: A long period of measurement showed the balance’s equilibrium point drifted over
time.

Var. Value Absolute Fractional Units
error error

A 0.0265612 0.0002192 0.8254% V
β 0.00113724 3.372e-05 2.965% 1

sec
ω1 0.0389085 3.087e-05 0.07933% rad

sec
t0 89730 0 0 sec
δ 1.84155 0.007355 0.3994% rad
C -1.01772 6.546e-05 0.006433% V

Table 5: Parameters of fit in figure 10.

Var. Dimension Measurement Uncertainty Units
Diameter of large sphere 5.46 0.03 cm

2 · r Diameter of small sphere 1.36 0.01 cm
ml Mass of large sphere 917.9 0.1 g
ms Mass of small sphere 14.7 0.1 g

Angular frequency of oscillation 2.3320 0.0042 rad
min

ω0 0.03887 0.00007 rad
sec

Table 6: Averaged dimensions used to obtain final results.
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Figure 7: Measurements used to obtain our final result.

Dimension Value
σS 1.795893 ·10−22

σb 3.600506 ·10−22

σd 1.022378 ·10−23

σr 1.724830 ·10−28

σω 1.487970 ·10−25

σm 1.363877 ·10−28

σL 5.871128 ·10−25

σG 2.346487 ·10−11

Table 7: Differential and final error calculations, for comparison.
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Figure 8: Measurements used to obtain our final result, with fitted equation (see text).
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Figure 9: Measurements used to obtain our final result, with fitted equation.
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Figure 10: Measurements used to obtain our final result, with fitted equation.
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