Physics 132-1 Test 1

I pledge that I have neither given nor received unauthorized assistance during the completion of this work.

Signature _____ Name _____

Questions (6 for 7 pts. apiece) Answer in complete, well-written sentences WITHIN the spaces provided. Show your reasoning.

1. In our development of kinetic theory we claimed that on average $\langle v_x^2 \rangle = \langle v_y^2 \rangle = \langle v_z^2 \rangle$ for a large number of particles in a box. Why?

2. Consider a mass of ice that is being heated. There are regions of the heating curve in which the temperature is not changing. What is happening to the added heat in these regions?

3. The figure shows the entropy of two solids S_A and S_B and their combined entropy S_{AB} as a function of the internal energy in solid A E_a . The solids are in thermal contact. At the most probable macrostate we showed that

$$\frac{dS_A}{dE_A} = \frac{dS_B}{dE_B}$$

and we require that $T_A = T_B$ at thermal equilibrium. Make a guess about the relationship between dS/dE and the temperature T. Justify your choice. Consider using the figure below.

4. When you measured the latent heat of vaporization of nitrogen in lab you made some measurements with the power to the resistor turned off. Why?

5. Consider a strange solid whose multiplicity is always one $(\Omega_A = 1)$ no matter how much energy you put in it. If you put lots of energy in solid A and then put it into thermal contact with a 'normal' Einstein solid (solid B) that has the same number of atoms $(N_A = N_B)$, but far less energy $(q_A >> q_B)$, what happens? Explain.

6. You may have noticed that when you blow up a balloon it is difficult at the start, but becomes easier once you get enough air into the balloon. In other words you have to exert more pressure when you start blowing it up. Consider two, air-filled balloons connected by a straight tube with a closed value as shown below. If the value is opened what will happen to the sizes of each balloon? Explain.

DO NOT WRITE BELOW THIS LINE.

Problems (3). Clearly show all reasoning for full credit. Use a separate sheet to show your work.

1. 14 pts. How many times more likely is it that the combined system of solids described in the table below will not be found in macropartition 3:4 than it is to be found in macropartition 0:7, if the fundamental assumption is true?

Macropartition	E_A	E_B	Ω_A	Ω_B	Ω_{AB}
0:7	0	7	1	36	36
1:6	1	6	3	28	84
2:5	2	5	6	21	126
3:4	3	4	10	15	150
4:3	4	3	15	10	150
5:2	5	2	21	6	126
6:1	6	1	28	3	84
7:0	7	0	36	1	36
				Total=	792

- 2. 20 pts. The Universe was created almost fourteen billion years ago in a cataclysmic explosion known as the Big Bang. As the Universe expanded after the explosion it cooled and its current temperature has been measured to be $T_b = 2.7 \ K$. Its number density is N/V = $10^6 \ particles/m^3$ which is primarily due to protons (H nuclei of mass $m_p = 1.67 \times 10^{-27} \ kg$) and its radius is $r = 10^{26} \ m$. Let's treat the Universe as a spherical, ideal gas of protons. What is the root-meansquare speed of the protons in this 'gas'? What is the total thermal energy in the gas? How does this compare with the energy output of all the stars in the universe $E_{stars} = 10^{65} \ J$?
- 3. 24 pts. A newly-created material has a multiplicity

$$\Omega = N e^{-NE/\hbar\omega}$$

where N is the number of atoms in the solid, E is the total internal energy in the solid, and $\hbar\omega$ is the energy of a single quantum. How is the energy E of the material related to the temperature T? What is the molar specific heat? Does this result make sense? Explain.

DO NOT WRITE BELOW THIS LINE.

Physics 132 Equations

$$\begin{split} \vec{F} &= m\vec{a} = \frac{d\vec{p}}{dt} \quad KE = \frac{1}{2}mv^2 \quad ME_0 = ME_1 \quad PE_g = mgh \quad \vec{p} = m\vec{v} \quad \vec{p}_0 = \vec{p}_1 \quad W = \int \vec{F} \cdot d\vec{s} \to P\Delta V \\ Q &= C\Delta T = cm\Delta T = nC_v\Delta T \quad Q_{f,v} = mL_{f,v} \quad \Delta E_{int} = Q + W \quad \vec{J} = \int \vec{F} dt = \langle \vec{F} \rangle \Delta t = \Delta \vec{p} \\ P &= \frac{|\vec{F}|}{A} \quad PV = Nk_B T = nRT \quad \langle KE \rangle = \langle E_{kin} \rangle = \frac{1}{2}m\langle v^2 \rangle \quad \langle E_{kin} \rangle = \frac{3}{2}k_B T \\ E_{int} &= N\langle E_{kin} \rangle = \frac{3}{2}Nk_B T \quad v_{rms} = \sqrt{\langle v^2 \rangle} \quad f = \#dof \quad C_V = \frac{f}{2}N_Ak_B \quad E_f = \frac{k_B T}{2} \quad E_{int} = \frac{f}{2}Nk_B T \\ \epsilon &= \hbar\omega \quad E_{atom} = (n_x + n_y + n_z)\epsilon \quad E = \sum_{i=1}^{3N} n_i\epsilon = q\epsilon \quad \Omega(N,q) = \frac{(q+3N-1)!}{q!(3N-1)!} \quad q = \frac{E}{\epsilon} \quad S = k_B \ln \Omega \\ \frac{dS}{dE} &= \frac{1}{T} \quad E = 3Nk_B T \quad C_n = \frac{1}{n}\frac{dE}{dT} \quad \langle x \rangle = \frac{1}{N}\sum_i x_i \quad \sigma = \sqrt{\frac{\sum_i (x_i - \langle x \rangle)^2}{N-1}} \\ \ln(ab) &= \ln a + \ln b \quad \ln\left(\frac{a}{b}\right) = \ln a - \ln b \quad \ln x^n = n\ln x \quad x = e^{\ln x} = \ln(e^x) \\ A &= \pi r^2 \quad A = 4\pi r^2 \quad V = Ah \quad V = \frac{4}{3}\pi r^3 \quad \frac{d}{dx}x^n = nx^{n-1} \quad \frac{d}{dx}(u \cdot v) = u\frac{dv}{dx} + v\frac{du}{dx} \quad \frac{d}{dx}\ln x = \frac{1}{x} \\ \frac{df(x)}{dx} &= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \quad \int_a^b f(x)dx = \lim_{\Delta x \to 0}\sum_{n=1}^N f(x)\Delta x \quad \frac{d}{dy}f(x) = \frac{df}{dx}\frac{dx}{dy} \quad \frac{d}{dx}e^x = e^x \end{split}$$

Physics 132 Constants

$T_{boiling}$ (N ₂)	77 K	$T_{freezing}$ (N ₂)	63 K
$T_{boiling}$ (water)	373 K or 100°C	$T_{freezing}$ (water)	273 K or $0^{\circ}\mathrm{C}$
$L_v(\text{water})$	$2.26 \times 10^6 \ J/kg$	L_f (water)	$3.33 \times 10^5 \ J/kg$
$L_v(N_2)$	$2.01\times 10^5~J/kg$	c (copper)	$3.87\times 10^2~J/kg-^{\circ}{\rm C}$
c (water)	$4.19\times 10^3~J/kg-K$	c (steam)	0.69 J/kg - K
c (iron)	$4.5 \times 10^2 \ J/kg - k$	c (aluminum)	$9.0 \times 10^2 J/kg - K$
ρ (water)	$1.0 imes 10^3 kg/m^3$	P_{atm}	$1.01\times 10^5~N/m^2$
k_B	$1.38 \times 10^{-23} \ J/K$	proton/neutron mass	$1.67\times 10^{-27}~kg$
R	8.31J/K - mole	g	$9.8 \ m/s^2$
0 K	-273° C	1 u	$1.67\times 10^{-27}~kg$
Gravitation constant	$6.67 \times 10^{-11} N - m^2/kg^2$	Earth's radius	$6.37 \times 10^6 m$

- () «		o - • •			A •		_				
	N ^a	argor 1801 39 94	2 %	xenoi 54	X						
U	a LL	18.998 chlorine 17 35.453	35 B	79.904 iodine 53	126.90	astatine 85	Z10				
5	oxygen 8	15.999 sultur 37.065	34 36 Selenium	78.96 tellurium 52	Te	polonium 84	209		and in the second s	уцегоцит 70 173.04	102 102 No
Ê	nitrogen 7	14.007 phosphorus 15 30.974	arsenic 33 AS	74.922 antimony 51	Sb	bismuth 83	208.98		the solits area	100 10 10 10 10 10 10 10	101 101 Md [258]
	6 6	12.011 silicon 14 Ni 28.086	germanium 32 Ge	72.61 tin 50	Sn 1871	82 82	207.2	UUU	una i una		100 100 Fm
Ĩ	D 2	10.811 aluminium 13 26.987		69.723 indium 49	h	mallium 84	204.38		h o looi i soo	67 HO 164.93	einsteinium 99 ES
1			Zn 30	65.39 cadmium 48	Cd	80	200.50	UUb	an i nanan in	66 66 162.50	californium 98 Cf [251]
ť			²⁹ Cu	63.546 silver 47	Ag	pold 79	1 96.97	UUU	en interested	65 Tb 158.93	97 97 BK 247
S			nickel 28	58.693 palladium 46	Pd	platinum 78	195.08	UUU 110	an di si instanta Sectores di sectores de la sectores d	64 64 157.25	²⁶ 96 CM 247
			27 27 Co	58.933 rhodium 45	Rh 102.91	iridium 77	192.22	109 109 Int [268]	Sort in structure i vo	63 63 151.96	americium 95 AM
ι.			ارت Fe	55.845 ruthenium 44		osmium 76	190.23	HS 108 HS [269]		62 62 50.36	Plutonium 94 PU [244]
			nanganese 25 Mn	54.938 technetium 43	Tc ⊪	rhenium 75	186.21	107 107 [264]	an in the second	Promentium 61 [145]	neptunium 93 Np [237]
1 ,1			chromium 24	51.996 molybdenum 42	Mo 85.84	tungsten 74	183.84	106 SG	an ana da seción con	60 144.24	uranium 92 U 238.03
()			vanadium 23	50.942 niobium 41		tantalum 73	180.95	dubnium 105 262		P 59 140.91	protactinium 91 231.04
C.			11111111111111111111111111111111111111	47.867 zirconium 40	Zr 91.224	hafnium 72	178.49	104 104 261	oor in	58 58 140.12	100 11 232.04
			21 22 Sc	44.956 yttrium 39	★	1utetium 71	174.97	lawrendum 103 [Lonoth a series	57 La 138.91	B9 89 AC
						57-70 ¥	<	89-102 * *		series	eries
1	beryllum 4 Be	9.0122 12 12 7305 24 305	20 20 Calcium	40.078 strontium 38	Sr Sr	56 D	137.33	88 88 88		nanide	inide s
hydrogen	Ithium 3	sodium 11 22 990	19	39.098 rubidium 37	Rb 85468	55	132.91	franctum 87 [223]		*Lantl	* * Act

The Periodic Chart.