What is the Energy of an Electron?

The Coulomb force binds an electron and a proton into a hydrogen atom
with a force that is mathematically identical to the gravitational force that

binds the planets in our Solar System, the Moon to the Earth, etc. What
is the energy E. of an electron?
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What We Already Know. 2

@ The Organizing Principle.

MEy, = ME
KEy + PEh = ME + PE
1 1
5mvg + PEy, = 5mvl2 + PE
@ The Forces
- Gmimsy | - k .
Fgrav ; 2”12 Fcoul = qulqz 12
M2 12

The simulation is here.
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https://phet.colorado.edu/sims/html/gravity-and-orbits/latest/gravity-and-orbits_en.html

Atomic Spectroscopy - 1 3

Light from a hydrogen spectrum tube is incident on a diffraction grating in
a spectrometer. A narrow, red line appears at 67 = 23.2°. The grating has
a line density of 600 lines/mm. What is the wavelength of the light?

What is the energy of the photons?
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The Diffraction Grating 4
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Measuring Hydrogen 5

When analyzing a light source, angles of diffraction are measured using the
vernier scales. However, the scales only measure the relative rotational positions
of the telescope and the spectrometer table base. Therefore, before making a
measurement, it's important to establish a vernier reading for the undeflected
beam. All angles of diffraction are then made with respect to that initial reading
(see figure). To obtain a vernier reading for the undeflected beam, first align the
vertical cross-hair with the fixed edge of the slit image for the undeflected beam.
Then read the vernier scale. This is the zero point reading 6.
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Measuring Hydrogen

When analyzing a light source, angles of diffraction are measured using the
vernier scales. However, the scales only measure the relative rotational positions
of the telescope and the spectrometer table base. Therefore, before making a
measurement, it's important to establish a vernier reading for the undeflected
beam. All angles of diffraction are then made with respect to that initial reading
(see figure). To obtain a vernier reading for the undeflected beam, first align the
vertical cross-hair with the fixed edge of the slit image for the undeflected beam.
Then read the vernier scale. This is the zero point reading 6.
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Measuring Hydrogen 7

@ To obtain a vernier reading for the undeflected beam, first align the vertical
cross-hair with the fixed edge of the slit image for the undeflected beam. Then
read the vernier scale. This is the zero point reading 6o.

@ To read the angle, first find where the zero point of the vernier scale aligns with the
degree plate and record the value. If the zero point is between two lines, use the
smaller value. In the figure below, the zero point on the vernier scale is between
the 155° and 155°30" marks on the degree plate, so the recorded value is 155°.

© Now use the magnifying glass to find the
line on the vernier scale that aligns most
closely with any line on the degree scale. In
the figure, this is the line corresponding to
a measurement of 15 minutes of arc. Add
this value to the reading recorded above
to get the correct measurement to within
1 minute of arc: that is, 155° + 15’ =
155° 15,

5 (on e vermier scae] | 155" on o dogree scae]
165°+ 15 = 1657 15

Jerry Gilfoyle Quanta 7/27



What We Measured In Lab. 8
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The Hydrogen Lines
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Hydrogen Quantum Numbers
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Hydrogen Quantum Numbers
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Hydrogen Quantum Numbers
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Hydrogen in the Galaxy.

Our galaxy is filled with large
gas clouds left over from its for-
mation. The light emitted from
these clouds can tell us about
their composition and the na-

ture of the processing going in- ' T weRe

side them. An astronomer has . .

measured an emission line with Transition | Energy (eV)
a wavelength A = 1216 A (see ) 5 856
figure). Does this line indicate ) 2550
the presence of hydrogen in the 350 1.889
cloud?
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Electron Scattering on Hydrogen.

An electron beam strikes a gas of hydrogen atoms.

@ What is the minimum speed the electrons must have to cause the
emission of A\ = 656 nm light from the 3 — 2 transition of hydrogen?

@ What is the electric potential difference the electrons must fall
through to be accelerated to this speed?
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Classical Physics versus Quantum Mechanics 15

Classical Physics

1 Start with Newton's Laws.
Insert the force/potential.

3 Solve the differential equation

with initial conditions
d?r

= mMm——-

dt2

where ris the position.

4 Get the position r{(t) as a func-
tion of time.

&

Quantum Physics

Start with Schroedinger’s equation.
Insert the force/potential.
Solve the differential equation with

initial conditions
K2 d2¢ L2
2m dr2 mr?

Y+ V= Ey(r)

where ) is a wave function.

Get the probability |¢/(7)|? as a func-
tion of time.

P
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Changing Orbits (for Planets)
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Changing Orbits (for Hydrogen)
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Schroedinger Shooter

& Schrodinger Shooter - o x
File Select Edit View
. =
Em1 () 22| e | Reset
Vet (p) = - e
p | o J
Energy (Rydbergs): -1 5 AdjustEnergy: |+ - “04 [ <] »
Potential Energy Function
15
10
z 05
0240
E 00
05
-1.0
=16 = 1 i i "
0 2 4 6 & 10 12 14 16 18 20 2 4 28 28 3B
rho(a0)
xo™ Wave Function
6
4 ~
|
0
-2
-4
5
1240 0 2 4 [ 8 10 12 14 16 18 20 22 24 28 28 30
rho(a0)
Potential Eneray: V00
Kinetie Energy: T6)
Total Energy: €
. Forbidden Region: Togw0
\Amm ~ | Normalized ¥ \cyory 300 Count: 101 Wave Fanction: i

Quanta 16 / 27




A Theory for the Hydrogen Atom - Results 1

What did your ground-state wave function look like?
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A Theory for the Hydrogen Atom - Results 1

What did your ground-state wave function look like?
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A Theory for the Hydrogen Atom - Results 3

What did your n=3 wave function look like?
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A Theory for the Hydrogen Atom - Results 3

What did your n=3 wave function look like?
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A Theory for the Hydrogen Atom - Results 3

What did your n=3 probability distribution look like?
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A Theory for the Hydrogen Atom - Results 4

Forn=3, L =1.
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What is the Energy of an Electron?

The Coulomb force binds an electron and a proton into a hydrogen atom
with a force that is mathematically identical to the gravitational force that

binds the planets in our Solar System, the Moon to the Earth, etc. What
is the energy E. of an electron?
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What We Already Know.

@ The Organizing Principle.

MEy, = ME
KEy + PEh = ME + PE
1 1
5mvg + PEy, = 5mvl2 + PE
@ The Forces
- Gmimsy | - k .
Fgrav ; 2”12 Fcoul = qulqz 12
M2 12

The simulation is here.
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https://phet.colorado.edu/sims/html/gravity-and-orbits/latest/gravity-and-orbits_en.html

The Kinetic Energy in Polar Coordinates - 1 27
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The Kinetic Energy in Polar Coordinates - 1 28
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The Kinetic Energy in Polar Coordinates - 1 29
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Orbits 30

A Russian Artica satellite that monitors polar weather follows an elliptical
orbit around the Earth at an altitude of h = 300 km above the surface
(radius rs = 6.67 x 10° m). At one point in its orbit its velocity is
measured to be

V=41x103m/s P +75x10° m/s §

What is the angular momentum? What is the total energy? What is the
distance of closest approach to the Earth? The satellite mass is
ms = 600 kg.

Reareh = 6.37 x 10® m
Mearth = 5.97 x 10%* kg
G = 6.673 x 107 Nm?/kg?

Arktica-M
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Changing Orbits
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Orbits and the Effective Potential
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