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What are you made of and how do you know? 2
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What are you made of and how d

Dalton's Atomic Theory (1808) Tz )
D OLE g
@ AIll matter consists of tiny particles. e
@ Atoms are indestructible and unchangeable. 60 6o Go do do
© Elements are characterized by the mass of ‘m °“’°°‘° "'0
their atoms. Fo o o o
© When elements react, their atoms combine in agw ggg

simple, whole-number ratios. Lo i

from A New System of Chemical Philoso-
phy (1808) by John Dalton
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What are you made of and how do you know? 4

Dalton's Atomic Theory (1808) Tz )
DOLEER L
H H H 006 Q000O0
@ AIll matter consists of tiny particles. He e
@ Atoms are indestructible and unchangeable. 60 6o Go do do
© Elements are characterized by the mass of ‘m °“’°°‘° "'0
their atoms. Fo o A
© When elements react, their atoms combine in agw ggg
simple, whole-number ratios. Ll !
B
from A New System of Chemical Philoso-
Boltzmann's Kinetic Theory (1905) phy (1806) by John Dalton
& 4
@ Matter consists of tiny particles. Z< 35 o, O,
o
@ Use Newtonian physics to calculate ideal gas } 3F dZHzO ch,
properties like the heat capacity/specific heat. 22 i, ,\12 52 o)
© Connects bulk properties to microscopic I .
motion of atoms. “IHe Ar Ne Kr
0.5

Molecule
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Specific Heats of Ideal Gases 5

Assume that a pure, ideal gas is made of tiny particles that bounce into each other and
the walls of their cubic container of side . Show the average pressure P exerted by this
gas is

1N =35
P = gvmvt?otal é : E E
T L L] 4
Use the ideal gas law (PV = NkgT =  $30- b T
nRT)and the conservation of energy (AEj,: = S I . O
CvAT) to calculate the specific heat of an ideal 25 g O
gas and show the following. Cee e ’
3 20; H, N, 0, CO B
Cy = ENAkB F 1
15~ N
Is this right? [roo8te ]
10; He Ar Ne Kr 7
N - number of particles V=2 [ ]
kg - Boltzmann constant m - atomic mass 5; B
N4 - Avogadro's number  Viora - atom’s speed r ]
Molecule
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The Plan 6

Newton's Laws ——>

Jerry Gilfoyle Atoms 4 /45



Temperature and Heat
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Temperature and Heat
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Temperature and Heat

Heat (Q) is thermal energy transferred from one place or body to another
due to a difference in temperature. Thermal energy is the mechanical
energy (kinetic and potential) associated with atomic motion in an object.
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Temperature and Heat

Heat (Q) is thermal energy transferred from one place or body to another
due to a difference in temperature. Thermal energy is the mechanical
energy (kinetic and potential) associated with atomic motion in an object.
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Calorimetry/Energy Conservation 11

Two ice cubes each with mass m; = 0.050 kg are taken from a freezer at
To = 0°C and dropped into a container holding m,, = 1.0 kg of water at
T1 = 25°C. What will be the final temperature of the liquid? Assume the
container absorbs no heat.

Cice = 2090 J/kg — K
Cw = 4186 J/kg — K
L =3.33x 105 J/kg

Jerry Gilfoyle Atoms



Calorimetry/Energy Conservation 12

Two ice cubes each with mass m; = 0.050 kg are taken from a freezer at
To = 0°C and dropped into a container holding m,, = 1.0 kg of water at
T1 = 25°C. What will be the final temperature of the liquid? Assume the
container absorbs no heat.

Water boils 212H; 100H; 373H Cice = 2090 J/kg — K
=41 kg — K

Normal body temp 99 H ‘5:, 37H ‘g 310 é Cw 86 J/ g

Room temperature  68H>= 20+ = 293H= Lr=3.33x10 J/kg

Water freezes 32H . 0OH l 273 !

CO, sublimates —109H —78H 195H

Nitrogen boils ~ —321H —196H 77H

Absolute zero ~ —460~ —273" (U

Jerry Gilfoyle Atoms 9/



Newton's Laws ——>

—_—

Temperature

First Law —— >

Specific Heat
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Heat of Vaporization of Liquid Nitrogen Lab 14
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The First Law of Thermodynamics 15

Let 1.00 kg of liquid water at 100° C be converted to steam at 100° C.
The water is contained in a cylinder with a movable piston of negligible
mass that sits right on top of the water at the start. The volume changes
from an initial value of 1.00 x 103 m? as a liquid to 1.671 m?> as steam.
The latent heat of vaporization of water is Ly, = 2.26 x 10° J/kg and
atmospheric pressure is Paim = 1.01 x 10° Pa.
@ How much work is done  Piston Water
by this process?
@ How much heat must Container
be added?

© What is the change in the
water's internal energy? y

Jerry Gilfoyle Atoms 12 / 45



The Mechanical Equivalent of Heat

Joule’s original apparatus

masses

" Paddle

Thermal /
insulator
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What Happens at the Phase Change?

/Repulswe force

Intermolecular Separation
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\Zero force

The energy diagram for two atoms.

Jerry Gilfoyle Atoms 14 / 45



Ideal Gases 18

A weather balloon is loosely inflated to a volume Vo = 2.2 m? with helium
at a pressure of Py = 1.0 x 10° Pa and a temperature Ty = 20°C. At an
elevation of 20,000 ft the atmospheric pressure is down to

P; = 0.5 x 10° Pa and the temperature is T; = —48°C. The bag can
expand freely. What is the new volume of the bag? What is the gas mass?

Jerry Gilfoyle

Atoms

15 / 45



Ideal Gases 19

A weather balloon is loosely inflated to a volume Vo = 2.2 m? with helium
at a pressure of Py = 1.0 x 10° Pa and a temperature Ty = 20°C. At an

1 7
H ulj_e
"’1‘% s 2 1% n 4 J)%n
3 4 8 9
Li Be 0 F Ne
Lithium Beryllum Oxygen Fluorine Neon
6941 9012 15999 18.998 20180
12 T
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Sodium Magnesium lfur Chlorine Argon
2305 3 4 5 6 7 8 9 10 n 2 32066 345 30.948
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Absolute Zero and Ideal Gases 20
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Ideal Gases 21

A steel tank contains mg = 0.30 kg of ammonia gas (NH3) at an absolute
pressure Py = 1.35 x 10° N/m? and a temperature To = 77° C. What is
the volume of the tank? At a later time the tank is checked. The
temperature has fallen to T; = 22° C and the pressure has fallen to

P; = 8.7 x 10° N/m?. How many kilograms of gas leaked out of the tank?

Jerry Gilfoyle Atoms 17 / 45



Boyle’'s Law for Ideal Gases - 1

Pressure vs. Syinge Volume
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Boyle’'s Law for Ideal Gases - 2
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Specific Heats of Ideal Gases (The Problem) 24

Assume that a pure, ideal gas is made of tiny particles that bounce into each other and
the walls of their cubic container of side . Show the average pressure P exerted by this
gas is

1N =35
P = gvmvt?otal é : E E
T L L] 4
Use the ideal gas law (PV = NkgT =  $30- b T
nRT)and the conservation of energy (AEj,: = S I . O
CvAT) to calculate the specific heat of an ideal 25 g O
gas and show the following. Cee e ’
3 20; H, N, 0, CO B
Cy = ENAkB F 1
15~ N
Is this right? [roo8te ]
10; He Ar Ne Kr 7
N - number of particles V=2 [ ]
kg - Boltzmann constant m - atomic mass 5; B
N4 - Avogadro's number  Viora - atom’s speed r ]
Molecule

Jerry Gilfoyle Atoms 20 / 45



The Kinetic Model of Ideal Gases

© The gas consists of a large number of small, mobile particles and their
average separation is large.

©

The particles obey Newton's Laws and the conservation laws, but
their motion can be described statistically.

The particles’ collisions are elastic on average.
The inter-particle forces are small until they collide.

The gas is pure.

© 000

The gas is in thermal equilibrium with the container walls.

Jerry Gilfoyle Atoms 21/ 45


https://www.youtube.com/watch?v=cDcprgWiQEY

Trajectory of Brownian Motion

Brownian motion simulation in 2D

2
15 L
&
Ao d
>
v
05
0 ‘/i ,
2 15 4 05 0 05
<-X->
Click here

Jerry Gilfoyle Atoms 22 /45


https://www.youtube.com/watch?v=cDcprgWiQEY

The Plan and the Data
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The Pressure of an ldeal Gas - Impulse and
Momentum Change
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The Pressure of an ldeal Gas - Impulse and

Momentum Change
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Instantaneous Force

Ara 032N-s
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Instantaneous versus Average Force
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Area: 0.32 N-s
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Instantaneous versus Average Force

Z .
3
[ R
5
5
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Area: 0.32 N-s
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Atoms
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Instantaneous Force in the Gas

Force Instantaneous Force _ _
© Consider a tiny patch

of the container.
¥ @ |It's repeatedly hit by
gas particles (blue).

: - - A  Time
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Instantaneous versus Average Force in the Gas 34

Force Average Force Shape

© Consider a tiny patch
/N of the container.
@ |It's repeatedly hit by
gas particles (blue).

- Time
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Instantaneous versus Average Force in the Gas 35

Force Average Force Shape _ _
© Consider a tiny patch

of the container.
@ It's repeatedly hit by
gas particles (blue).
© The average time
separation is (At).

- Time
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Instantaneous versus Average Force in the Gas 36

Force Average Force Shape _ _
© Consider a tiny patch

of the container.

It's repeatedly hit by

At
84) gas particles (blue).

(F)
The average time
separation is (At).

Average force is red.

AN Y .

o)

Blue area = Red area
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Momentum Conservation and Hitting Walls 37

An atom of mass my, collides elastically head-on with a heavier, stationary, target
atom of mass m,. Both particles are free to move in space. The initial velocity of
the projectile is p as shown below. What is the final velocity v; of the projectile
in terms of the masses, 1p, and any other constants? What happens to the final

velocity v as the target mass m, becomes very large? Ignore the effects of
potential energy.

©) > &

mp Vo

my

Jerry Gilfoyle Atoms 32 /45



The Plan - Act. 2 of Kinetic Theory of Ideal Gases 38

The Model

Newton's Laws ——> W

Pressure of an
Ideal Gas

Ideal Gas Law ——— > l

Temperature

First Law —— >

Specific Heat

Jerry Gilfoyle Atoms 33 /45



Is Potential Energy Important?

A helium atom is moving straight up from the floor of the lab that is at
room temperature T = 300 K. Miraculously, the atom never strikes
another atom or molecule until it reaches the ceiling at a height h=4.0 m
above the floor. What is the helium atom's rms speed when it hits the
ceiling? How much has its speed changed from the initial speed?

Jerry Gilfoyle Atoms 34 / 45



Specific Heats of Ideal Gases 4

Assume that a pure, ideal gas is made of tiny particles that bounce into each other and
the walls of their cubic container of side . Show the average pressure P exerted by this
gas is

1N 535
P= gvmvt?otal é E E
Use the ideal gas law (PV = NkgT =  E30° o, 4 T Nake
nRT)and the conservation of energy g o e | 2
(AEin: = CvAT) to calculate the specific 25- C'IHzo i
heat of an ideal gas and show the following. [ . ’ 1s
20; oo ° 4 ENAkB
3 3 r H, N, O, CO ]
Cv = =Nakg = =R r ]
2 2 150 ]
Is this right? Frren e B i%NAkB
10; He Ar Ne Kr .
N - number of particles V=2
ks - Boltzmann constant  m - atomic mass a B
N4 - Avogadro's number  viora - atom’s spe r ]
Molecule
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The Kinetic Model of Ideal Gases

@ The gas consists of a large number of small, mobile particles and their
average separation is large.

©

The particles obey Newton's Laws and the conservation laws, but
their motion can be described statistically.

The particles’ collisions are elastic on average.
The inter-particle forces are small until they collide.

The gas is pure.

© 000

The gas is in thermal equilibrium with the container walls.
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The Plan - Activity 2 of Applying the Kinetic Theory42

The Model

Newton's Laws ——> W

Pressure of an
Ideal Gas

Ideal Gas Law ——— > v

Temperature of an
Ideal Gas

First Law —— >

Specific Heat
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The Plan - Activity 3 of Applying the Kinetic Theory43

The Model

Newton's Laws ——> W

Pressure of an
Ideal Gas

Ideal Gas Law ——— > v

Temperature of an
Ideal Gas

First Law —— > W

Specific Heat of an
Ideal Gas

Jerry Gilfoyle Atoms 38 /45



The Plan - Activity 4 of Applying the Kinetic Theory44

Jerry Gilfoyle

The Model
Newton's Laws ——>

Y

Pressure of an
Ideal Gas

Ideal Gas Law ——— > v

Temperature of an
Ideal Gas
First Law ——> v

Specific Heat of an
Ideal Gas

Y

Compare with
Data!!

Atoms
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The Results

Jerry Gilfoyle
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Rotational Kinetic Energy

Classically

1,
KE=5mv =50 = am

For rotational motion
L2
Erot = A7
27T

where L is angular momentum and

I:Zmrf:/rzdm

Quantum mechanically

gam _ AL+ 1)h?
rot — 2I

where ¢ is the angular momentum

quantum number.

Gilfoyle
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A Hint of Quantum Mechanics

y
Rotation about the z-axis
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Applying Quantum Mechanics

How much heat does it take to increase the temperature of n = 4.0 moles
of Hy gas by AT = 25 K at room temperature T = 25°C if the gas is held
at constant volume? Would the answer change if the gas were No?7 What

about He?
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Calorimetry Measurement
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Thermodynamic Information

TABLE 17.3 Melting/boiling temperatures and heats of transformation

Substance o) L:(J/kg) T, (°C) L, (J/kg)
Nitrogen (N,) -210 026 % 10° -196 1.99 x 10°
Ethyl alcohol —114 1.09 x 10° 78 8.79 X 10°
Mercury -39 0.11 % 10° 357 296 X 107
Waler 0 333 % 10° 100 22.6 X 10°
Lead 328 025 % 10° 1750 8.58 X 10°

TABLE 17.2 Specific heats and molar
specific heats of solids and liquids

Substance ¢ (JikgK) C(J/molK)

Solids

Aluminum 900 243
Copper 385 244
Iron 449 25.1
Gold 129 254
Lead 128 26.5
Ice 2090 376
Liquids

Ethyl alcohol 2400 1104
Mercury 140 28.1
Water 4190 754
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