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Nuclear Weapons 101

Uranium, gun-type nuclear weapon -

High explosive detonates pushing highly-
enriched uranium at high speed into an-
other piece of active material.

Two-stage, thermonuclear weapon -

(1) Spherically-shaped high explosive
detonates crushing the plutonium pri-
mary to a critical density.

(2)The uranium and plutonium in the sec-
ondary burn and increase the tempera-
ture until fusion starts. The energy re-
leased by the fusion reaction raises the
temperature even higher and burns more
of the fission fuel.
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Nuclear Weapons 101 - Effects

Energy released in the form of
light, heat and blast.

Blast ≈40-50% of total energy.

Thermal radiation ≈30-50% of
total energy.

Ionizing radiation ≈5% of total
energy.

Residual radiation ≈5-10% of
total energy.

Figure shows effect of a 15
kiloton bomb (about the size of
the Hiroshima bomb) exploded
over the .

5−psi effect
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Nuclear Weapons 101 - Why Should You Care?

Nuclear Smuggling (Scientific American, April, 2008)

Existing and future radiation portal monitors cannot cost-effectively
detect weapons-grade uranium hidden inside shipping containers.
The U.S. should spend more resources rounding up nuclear
smugglers, securing HEU, and blending down this material to
low-enriched uranium, which cannot be fashioned into a bomb.

Uranium in a haystack

20 feet - length of a typical shipping container (TEU).
297 million - Number of TEUs shipped worldwide in 2005.
42 million - TEUs entering U.S. ports that same year.
6,500 - TEUs arriving at the Port of New York and New Jersey on a
light day; up to 13,000 on a busy day.
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297 million - Number of TEUs shipped worldwide in 2005.
42 million - TEUs entering U.S. ports that same year.
6,500 - TEUs arriving at the Port of New York and New Jersey on a
light day; up to 13,000 on a busy day.

Uranium and plutonium detection is a key physics issue.
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Who is the Hottest?

Consider two nuclear weapon ‘pits’, one made of 235U with mU = 24 kg

and the other made of 239Pu with mPu = 8 kg. Their radioactive decay is
described by the differential equation

dN

dt
= −λN

where N is the number of nuclei, t is time, and λ is the decay constant.
This equation has the following solution.

N = N0e
−λt

1. What is the half-life of each isotope? Use the website here.

2. How is the half-life related to the decay constant?

3. Which one decays fastest?

4. What radiation actually comes out?
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Gamma Rays from Uranium and Plutonium
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The 232
U Decay Scheme
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Stopping Power of Gamma-Rays in Uranium

Source:
http://physics.nist.gov/PhysRefData/XrayMassCoef/El emTab/z92.html
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Penetrating Radiation

Consider an HEU (highly-enriched uranium) pit with
mU = 24 kg with a small amount, 1 ppt, of 232

U mixed
uniformly throughout the volume. If one of the 232

U nuclei at
the center of the pit goes through its decay chain (shown
below) a 2.6-MeV gamma ray will eventually be emitted
from the decay of the 208

Pb daughter/son/child nucleus. Will
that gamma ray get out of the pit? The stopping power of
2.6-MeV gammas in uranium is µ/ρ = 0.046 g/cm2. The
density of uranium is ρ = 19.05 g/cm3.
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Nuclear Decay Monte Carlo
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Nuclear Decay Monte Carlo
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Nuclear Decay Monte Carlo
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Acceptance-Rejection Method to Select Monte Carlo Events
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Isotropic Decay
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Monte Carlo for Self-Attenuation - 1

( * parameters * )

nthrows = 1000;

ndecays = 0;

ngammas = 0;

rstep = 0.01‘;

mU = 25000.‘;

rhoU = 19.05‘;

muoverrhoU = 0.046‘;

mu = muoverrhoU * rhoU;

rU = ((3 mU)/(4 \[Pi] rhoU))ˆ(1/3);

( * event loop. * )

Do[x0 = RandomReal[{-rU, +rU}];

y0 = RandomReal[{-rU, +rU}];

z0 = RandomReal[{-rU, +rU}];

r0 = Sqrt[x0ˆ2 + y0ˆ2 + z0ˆ2];

rgamma = 0.‘;

distance = 0.‘;
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Monte Carlo for Self-Attenuation - 2

( * see if we’re in the sphere, then do the decay. * )

If[r0 < rU,

ndecays = ndecays + 1; ( * get a random direction. * )

zcosine = RandomReal[{-1, 1}];

zsine = Sqrt[1 - zcosineˆ2];

phi = RandomReal[{0, 2 \[Pi]}];

( * step along the path of the gamma until we leave the sphere. * )

While[distance < rU,

rgamma = rgamma + rstep;

xgamma = rgamma zsine Cos[phi] + x0;

ygamma = rgamma zsine Sin[phi] + y0;

zgamma = rgamma zcosine + z0;

distance = Sqrt[xgammaˆ2 + ygammaˆ2 + zgammaˆ2];

]; ( * end of while loop to get photon out of the sphere. * )

Pemission = \[ExponentialE]ˆ(-mu * rgamma);

Ptest = RandomReal[{0, 1}];

If[Ptest < Pemission, ngammas = ngammas + 1] ( * photon got out? * )

] ( * end of If test on being inside sphere. * ),

{i, 1, nthrows}]; ( * End of event loop. * )
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Uncertainty in Monte Carlo Calculations
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