Molecular Vibrations

Our picture of the interactions of atoms within ^a molecule is often built on classical ideas. The motion of atoms in a CO_2 molecule can be described **as point particles attached by springs. The spring constant for the C**
as point particles attached by springs. The spring constant for the C $$ bond is $7.0\ eV/\r$ A^z derived from the bond potential shown below. Suppose our 'toy' CO_2 molecule is 'plucked' by pulling the left-hand-side oxygen atom $0.2\,$ \AA to the left and the right-hand-side oxygen $0.2\ \AA$ to the right. Both atoms are then released from rest. What is the position of each atom in the molecule as a function of time?

More Molecular Vibrations

Consider a 'classical' model of a molecule like cyclopropane, $\rm{C_3H_6}$ shown below. The equations of motion are shown below.

More Molecular Vibrations

Consider a 'classical' model of a molecule like cyclopropane, $\rm{C_3H_6}$ shown below. The equations of motion are shown below. ow.

$$
\ddot{x}_1 + \frac{1}{4}\omega_0^2 \left[5x_1 - 4x_2 - x_3 + \sqrt{3}(y_1 - y_3) \right] = 0
$$

\n
$$
\ddot{x}_2 + \frac{1}{4}\omega_0^2 \left[-4x_1 + 5x_2 - x_3 + \sqrt{3}(y_3 - y_2) \right] = 0
$$

\n
$$
\ddot{x}_3 + \frac{1}{4}\omega_0^2 \left[-x_1 - x_2 + 2x_3 + \sqrt{3}(y_2 - y_1) \right] = 0
$$

\n
$$
\ddot{y}_1 + \frac{1}{4}\omega_0^2 \left[\sqrt{3}(x_1 - x_3) + \sqrt{3}(y_1 - y_3) \right] = 0
$$

\n
$$
\ddot{y}_2 + \frac{1}{4}\omega_0^2 \left[\sqrt{3}(x_3 - x_2) + \sqrt{3}(y_2 - y_3) \right] = 0
$$

\n
$$
\ddot{y}_3 + \frac{1}{4}\omega_0^2 \left[\sqrt{3}(x_2 - x_1) + \sqrt{3}(-y_1 - y_2 + 2y_3) \right] = 0
$$