## **Molecular Vibrations**

Our picture of the interactions of atoms within a molecule is often built on classical ideas. The motion of atoms in a  $CO_2$  molecule can be described as point particles attached by springs. The spring constant for the C - O bond is  $7.0 \ eV/A^2$  derived from the bond potential shown below. Suppose our 'toy'  $CO_2$  molecule is 'plucked' by pulling the left-hand-side oxygen atom  $0.2 \ A$  to the left and the right-hand-side oxygen  $0.2 \ A$  to the right. Both atoms are then released from rest. What is the position of each atom in the molecule as a function of time?



## **More Molecular Vibrations**

Consider a 'classical' model of a molecule like cyclopropane,  $C_3H_6$  shown below. The equations of motion are shown below.



## **More Molecular Vibrations**

Consider a 'classical' model of a molecule like cyclopropane,  $C_3H_6$  shown below. The equations of motion are shown below.



$$\ddot{x}_{1} + \frac{1}{4}\omega_{0}^{2} \left[ 5x_{1} - 4x_{2} - x_{3} + \sqrt{3}(y_{1} - y_{3}) \right] = 0$$
  
$$\ddot{x}_{2} + \frac{1}{4}\omega_{0}^{2} \left[ -4x_{1} + 5x_{2} - x_{3} + \sqrt{3}(y_{3} - y_{2}) \right] = 0$$
  
$$\ddot{x}_{3} + \frac{1}{4}\omega_{0}^{2} \left[ -x_{1} - x_{2} + 2x_{3} + \sqrt{3}(y_{2} - y_{1}) \right] = 0$$
  
$$\ddot{y}_{1} + \frac{1}{4}\omega_{0}^{2} \left[ \sqrt{3}(x_{1} - x_{3}) + \sqrt{3}(y_{1} - y_{3}) \right] = 0$$
  
$$\ddot{y}_{2} + \frac{1}{4}\omega_{0}^{2} \left[ \sqrt{3}(x_{3} - x_{2}) + \sqrt{3}(y_{2} - y_{3}) \right] = 0$$
  
$$\ddot{y}_{3} + \frac{1}{4}\omega_{0}^{2} \left[ \sqrt{3}(x_{2} - x_{1}) + \sqrt{3}(-y_{1} - y_{2} + 2y_{3}) \right] = 0$$