Physics 303 One-Dimensional Oscillators

- 1. An object of mass $m = 7.0 \text{ kg}$ is hung from the bottom end of a vertical spring fastened to an overhead beam. The object is set into vertical oscillations of period $T = 2.6$ s. What is the force constant of the spring?
- 2. A particle of mass $m = 0.50$ kg is attached to a horizontal spring with a spring constant $k = 50$ N/m. At the time $t = 0$, the particle has its maximum speed $v_{max} = 20$ m/s and is moving to the left. What is the particle's equation of motion? What is the minimum time interval required for the particle to move from $x = 0$ to $x = 1.0$ m?
- 3. For the damped oscillator we showed the general solution to the differential equation

$$
\ddot{y} + 2\gamma \dot{y} + \omega_0^2 y = 0 \tag{1}
$$

is

$$
y = c_1 e^{\lambda + t} + c_2 e^{\lambda - t} \tag{2}
$$

where

$$
\lambda_{\pm}=-\gamma\pm\sqrt{\gamma^2-\omega_0^2}=-\gamma\pm\Omega
$$

and Ω is real for $\gamma^2 > \omega_0^2$. For the damped oscillator with $\gamma^2 < \omega_0^2$ show the general solution is

$$
y(t) = c_1 e^{(-\gamma + i\Omega')t} + c_2 e^{-(\gamma + i\Omega')t}
$$
\n(3)

where $\Omega' = \sqrt{\omega_0^2 - \gamma^2}$. This step makes the imaginary component of the solution explicit.

4. Apply the following boundary conditions

$$
for t = 0 \Longrightarrow y = y_0 \text{ and } \dot{y} = 0 \tag{4}
$$

to Equation 3 and show

$$
c_1 = y_0 \frac{\Omega' - i\gamma}{2\Omega'}\tag{5}
$$

and

$$
c_2 = y_0 \frac{\Omega' + i\gamma}{2\Omega'}\tag{6}
$$

5. Now insert the results in Equations 5-6 into Equation 3 and show the following equation is true.

$$
y(t) = \frac{y_0}{\Omega'} e^{-\gamma t} \left(\Omega' \cos \Omega' t + \gamma \sin \Omega' t \right)
$$
 (7)

6. Consider the function.

$$
f(x) = \frac{1}{\sqrt{1+x}}\tag{8}
$$

What is the Taylor series for this function for the first four terms? What does the nth term look like? When can we approximate the function with the first two terms in the series? Explain.

7. For a damped oscillator, Newton's second law gives us

$$
m\frac{d^2x}{dt^2} = -kx - b\frac{dx}{dt}
$$
\n(9)

in one dimension. Show that the expression

$$
x = Ae^{-bt/2m}\cos(\omega t + \phi)
$$
 (10)

is a solution as long as $b^2 < 4mk$.