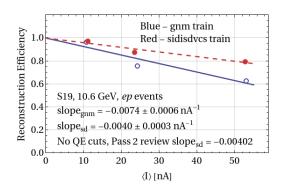
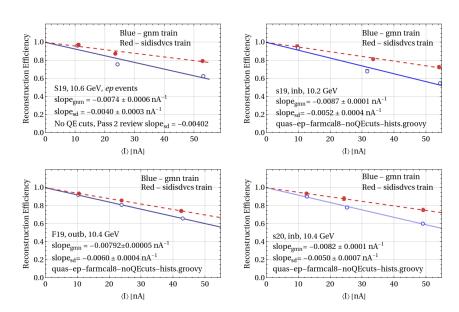
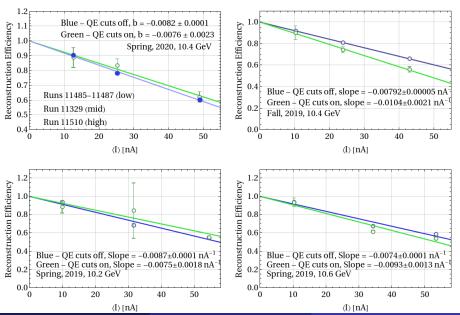

RGB Pass 2 Review


Normalized yields of eh+/-


Conventional
AI-assisted
Ratio

- Check luminosity effects on G_M^n analysis (gnm train).
- 2 Series of cuts to select quasi-elastic (QE) ep events.
 - Out on calculated beam energy from electron and nucleon angles.
 - 2 In-plane cut $(\Delta \phi)$.
 - **3** Angle between \vec{q} and nucleon momentum (θ_{pq}) .
- Remove QE cuts to get more *ep* events.
- Slope is steeper than the previous slide (sidisdvcs train).

- Steeper slope of reconstruction efficiency with luminosity observed for ep events from gnm train compared with eh₊ slope for pass 2 review.
- 2 Investigate differences between ep final states with different kinematics.
- Ocmpare final state from gnm (ep, no pions) and sidisdvcs (has protons, pions) trains.
- Plot below is a comparison of ep events from different trains, spring 2019, 10.6 GeV, runs 6157, 6371, 6378.



	sidisdvcs	gmn	$E_{beam}[GeV]$
Spring, 2020	$-0.0050 \pm 0.0007 \ \textit{nA}^{-1}$	$-0.0082 \pm 0.0001 \; nA^{-1}$	10.4
Fall, 2019	$-0.0060 \pm 0.0004 \; nA^{-1}$	$-0.0079 \pm 0.0001 \; nA^{-1}$	10.4
Spring, 2019	$-0.0052 \pm 0.0004 \ nA^{-1}$	$-0.0087 \pm 0.0001~nA^{-1}$	10.2
Spring, 2019	$-0.0040 \pm 0.0003 \; nA^{-1}$	$-0.0074 \pm 0.0001 \; nA^{-1}$	10.6

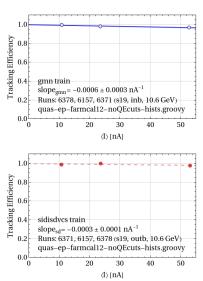
Weighted averages:

For sidisdvcs train: $\langle b \rangle = 0.0049 \pm 0.0002~nA^{-1}$ For gmn train: $\langle b \rangle = 0.00805 \pm 0.00005~nA^{-1}$

	QE cuts on	QE cuts off	$E_{beam}[GeV]$
Spring, 2020	$-0.0076 \pm 0.0023 \ nA^{-1}$	$-0.0082 \pm 0.0001 \; nA^{-1}$	10.4
Fall, 2019	$-0.0104 \pm 0.0021 \ nA^{-1}$	$-0.0079 \pm 0.0001 \; nA^{-1}$	10.4
Spring, 2019	$-0.0075 \pm 0.0018 \ nA^{-1}$	$-0.0087 \pm 0.0001 \; nA^{-1}$	10.2
Spring, 2019	$-0.0093 \pm 0.0013 \ nA^{-1}$	$-0.0074 \pm 0.0001 \; nA^{-1}$	10.6

Weighted averages:

```
For QE cuts on: \langle b \rangle = 0.0087 \pm 0.0014 \ nA^{-1} For QE cuts off: \langle b \rangle = 0.00805 \pm 0.00005 \ nA^{-1}
```


- Use NB method to get the current at frequent intervals Get ungated Faraday cut reading in RUN::config bank which records integrated current since last time the bank was written out.
- @ Get the timestamp from Trigger Interface board in RUN::config.
- Oivide by the time since the last recording of RUN::config bank.
- Require the current exceed a threshold of 1 nA to remove beam trips.

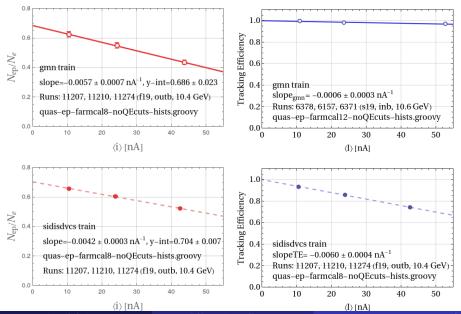
From CLAS12-NOTE 2020-005

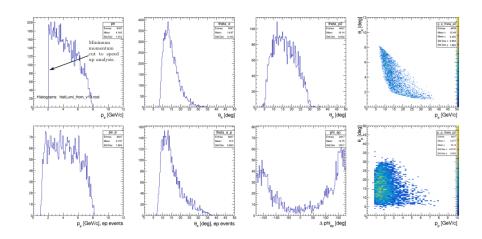
- $p_{\pm} > 0.4 \; {\rm GeV/c}$
- $2 |\chi 2PID| < 5, |\chi 2| < 10|$
- Reject tracks with FTOF Panel 2 don't see any.
- Vertex $-15 < v_z < 5$ cm in RGA. RGB had $-13 < v_z < 12$ cm for inbending.
- fiducial cuts

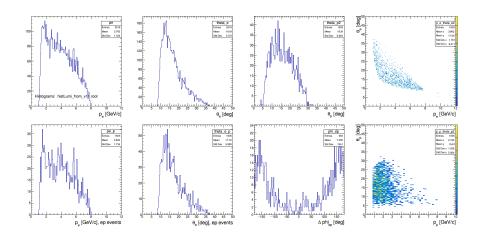
Backup Slides

Changed minimum electron momentum cut and luminosity slope now $\approx 0!$

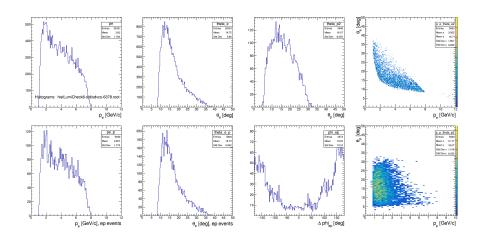
G_M^n yaml file

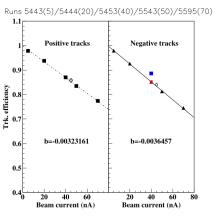

```
gmn1:
  id: 2
  forward: 11:Xn
  beamEnergy: 10.410
  targetPDG: 2112
  electron: Q2>0.95 && W<2 && vz>-25 && vz<20
gmn2:
  id: 2
  forward: 11:2212:Xn
  beamEnergy: 10.410
  targetPDG: 2212
  electron: 02>0.95 && W<2 && vz>-25 && vz<20
```

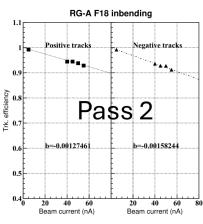

sidisdvcs yaml file


forward: 11:X+:X-:Xn beamEnergy: 10.410

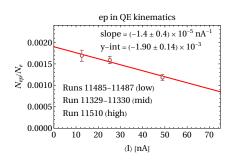
targetPDG: 2112

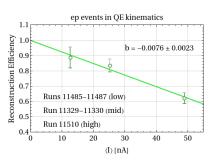

electron: Q2>0.95 && W>1.95 && p>1 && vz>-25 && vz<20




Revised distributions for ep events (sidisdvcs trains, S19)17

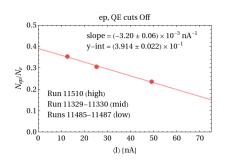
18 / 20

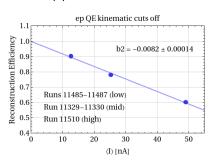

CLAS12-NOTE 2020-005



S.Stepanyan, RG-B, 9/7/24

Luminosity dependence of RGB data, QE cuts on (S20) 19


RGB N_{ep}/N_e luminosity dependence with QE cuts on - beam energy calculated from particle angles, θ_{pq} , and $\Delta\phi$.



Luminosity dependence of RGB data, QE cuts off (S20) 20

RGB N_{ep}/N_e luminosity dependence with QE cuts off - dropped cuts on beam energy calculated from particle angles, θ_{pq} , and $\Delta\phi$.

