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Abstract

The exercises in this manual have been developed to support an investigative physics course that
emphasizes active learning. Some of these units have been taken from the Workshop Physics project at
Dickinson College and the Tools for Scientific Thinking project at Tufts University and modified for use
at the University of Richmond. Others have been developed locally.

The units are made up of activities designed to guide your investigations in the laboratory. The
written work will consist primarily of documenting your class activities by filling in the entries in the
spaces provided in the units. The entries consist of observations, derivations, calculations, and answers to
questions. Although you may use the same data and graphs as your partner(s) and discuss concepts with
your classmates, all entries should reflect your own understanding of the concepts and the meaning of
the data and graphs you are presenting. Thus, each entry should be written in your own words. Indeed,
it is very important to your success in this course that your entries reflect a sound understanding of the
phenomena you are observing and analyzing.

We wish to acknowledge the support we have received for this project from the University of Richmond
and the Instrumentation and Laboratory Improvement program of the National Science Foundation.
Also, we would like to thank our laboratory directors for their invaluable technical assistance.
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Institute of Physics.



Contents

Calorimetry

CONTENTS CONTENTS
Work and Kinetic Energy 4
Conservation of Mechanical Energy 15
Force and Momentum Conservation 19
Heat, Temperature, and Internal Energy 28

30
Kinetic Theory of Ideal Gases 33
Applying the Kinetic Theory 39
Stefan’s Law 45
Treatment of Experimental Data 49
Introduction to DataStudio 51
Introduction to Excel 53
C.1 Data and formulae . . . . . . . . . . 53
C.2 Graphs. . . . . . 53
C.3 Making Histograms . . . . . . . . . . . e e 54

57

Video Analysis

Instrumentation

60






1 WORK AND KINETIC ENERGY

1 Work and Kinetic Energy1

Name Section Date

Objectives

e To extend the intuitive notion of work as physical effort to a formal mathematical definition of work
as a function of force and distance.

e To discover Hooke’s law.

e To understand the concept of kinetic energy and its relationship to work as embodied in the work-energy
theorem.

Apparatus

spring scale variety of masses support rod to hand spring
wooden block with hook large spring 2-meter stick

The Concept of Physical Work

Suppose you are president of the Richmond Load 'n’ Go Co. A local college has three jobs available and
will allow you to choose which one you want before offering the other two jobs to rival companies. All three
jobs pay the same amount of money. Which one would you choose for your crew? NOTE: The quantities
in this figure are given in British units, where “pounds” = mg, not just m, i.e. the g is already included.

A

Job 1 Job 2
Lifting 100 o
50-Ib boxes 30 ft <" Lifting 100 of the 50-Ib

20 © boxes a distance of 30 fe

a distance o I sancs o
of 20 feet O along a eg incline on
R “\30deg  frictionless rollers

Lifting 50

Job 3 13ﬁ 100-Ib boxes
a distance of
10 feet.

Activity 1: Choosing Your Job

Examine the descriptions of the jobs shown in figure above. Which one would you be most likely to choose?
Least likely to choose? Explain the reasons for your answer.

You obviously want to do the least amount of work for the most money. Before you reconsider your answers
later in this unit, you should do a series of activities to get a better feel for what physicists mean by work
and how the president of Load 'n’ Go can make top dollar.

11990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions
of this material have been modified locally and may not have been classroom tested at Dickinson College.



1 WORK AND KINETIC ENERGY

In everyday language we refer to doing work whenever we expend effort. In order to get an intuitive feel
for how we might define work mathematically, you should experiment with moving your textbook back and
forth along a table top and a rougher surface such as a carpeted floor.

Activity 2: This is Work!

(a) Pick a distance of a meter or so. Sense how much effort it takes to push a heavy book that distance.
How much more effort does it take to push it twice as far?

(b) Pile another similar book on top of the original one and sense how much effort it takes to push the two
books through the distance you picked. Comment below.

(c) If the “effort” it takes to move an object is associated with physical work, guess an equation that can be
used to define work mathematically when the force on an object and its displacement (i.e., the distance it
moves) lie along the same line.

In physics, work is not simply effort. In fact, the physicist’s definition of work is precise and mathematical.
In order to have a full understanding of how work is defined in physics, we need to consider its definition in
a very simple situation and then enrich it later to include more realistic situations.

A Simple Definition of Physical Work: If an object that is moving in a straight line experiences a
constant force in the direction of its motion during the time it is undergoing a displacement, the work done
by the external force, F¢.¢, is defined as the product of the force and the displacement of the object,

W = Fer{:tAx

where W represents the work done by the external force, Fi,+ is the magnitude of the force, and Az is the
displacement of the object.

What if the force of interest and the displacement are in opposite directions? For instance, what about the
work done by the force of sliding friction, Fy, when a block slides on a rough surface? The work done by
the friction force is

Wf = —FfA],‘



1 WORK AND KINETIC ENERGY

Activity 3: Applying the Physics Definition of Work

(a) Does effort necessarily result in physical work? Suppose two guys are in an evenly matched tug of war.
They are obviously expending effort to pull on the rope, but according to the definition of physical work,
are they doing any physical work? Explain.

o

(b) A wooden block with a mass of 0.30 kg is pushed along a sheet of ice that has no friction with a constant
external force of 10 N which acts in a horizontal direction. After it moves a distance of 0.40 m how much
work has been done on the block by the external force?

(¢) The same wooden block with a mass of 0.30 kg is pushed along a table with a constant external force of
10 N which acts in a horizontal direction. It moves a distance of 0.40 m. However, there is a friction force
opposing its motion with magnitude |F ¢yiction| = /N where N is the normal force exerted on the block by
by the table. Here N is perpendicular to the surface of the table and equal to the weight of the block (since
the table is holding up the block). The coefficient of sliding friction p is an experimental factor that relates
N to the friction force. Here puy, is 0.20.

direction of motion
-

I:friction _>Fexter nal
-

SIS S S S
VRPN II I

1. According to the definition of work done by a force, what is the work associated with the external
force? Is the work positive or negative? Show your calculation.

2. According to our discussion above of the work done by a friction force, what is the work associated
with the friction force? Is the work positive or negative? Show your calculation.



1 WORK AND KINETIC ENERGY

(d) Suppose you lift a 0.3 kg object through a distance of 1.0 m at a constant velocity.

1. What is the work associated with the force that the earth exerts on the object? Is the work positive
or negative? Show your calculation.

2. What is the work associated with the external force you apply to the object? Is the work positive or
negative? Show your calculation.

Pulling at an Angle What Happens When the Force and the Displacement Are Not Along the
Same Line?

Let’s be more quantitative about measuring force and distance and calculating the work. How should work
be calculated when the external force and the displacement of an object are not in the same direction?

22
v

VPPV I IV I I I I I

To investigate this, you will use a spring scale to measure the force necessary to slide a block along the table
at a constant speed. Before you make your simple force measurements, you should put some weights on your
block so that it slides along a smooth surface at a constant velocity even when it is being pulled with a force
that is 30 or 60 degrees from the horizontal.

Activity 4: Calculating Work

(a) Hold a spring scale horizontal to the table and use it to pull the block a distance of 0.5 meters along the
horizontal surface in such a way that the block moves at a constant speed. Record the force in newtons and
the distance in meters in the space below and calculate the work done on the block in joules. (Note that
there is a special unit for work, the joule, or J for short. One joule is equal to one newton times one meter,
ie.,J =Nm.)
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(b) Repeat the measurement, only this time pull on the block at a 30° angle with respect to the horizontal.
Pull the block at about the same speed. Is the force needed larger or smaller than you measured in part (a)?

(c) Repeat the measurement once more, this time pulling the block at a 60° angle with respect to the
horizontal. Pull the block at about the same speed as before.

(d) Assuming that the actual physical work done in part (b) is the same as the physical work done in part (a)
above, how could you enhance the mathematical definition of work so that the forces measured in part (b)
could be used to calculate work? In other words, use your data to postulate a mathematical equation that
relates the physical work, W, to the magnitude of the applied force, F', the magnitude of the displacement,
As, and the angle, 0, between ' and As. Explain your reasoning. Hint: sin 30° = 0.500, sin 60° = 0.866,
cos 30° = 0.866, cos 60° = 0.500.

Work as a Dot Product

Review the definition of dot (or scalar) product as a special product of two vectors in your textbook, and
convince yourself that the dot product can be used to define physical work in general cases when the force
is constant but not necessarily in the direction of the displacement resulting from it.

W =F-As

Activity 5: How Much Work Goes with Each Job?

(a) Re-examine the descriptions of the jobs shown in the figure on the first page of this experiment. What is
the minimum physical work done in job 1?7 Note that the data are given in British units, so the work will be
expressed in foot pounds (ft 1bs), not newton meters. Remember, the “pounds” are mg, so you don’t need
to multiply by g¢.

(b) What is the minimum physical work done in job 27

(c) What is the minimum physical work is done in job 37

(d) Was your original intuition about which job to take correct? Which job should Richmond Load 'n’ Go
try to land?



1 WORK AND KINETIC ENERGY

The Force Exerted on a Mass by an Extended Spring

So far we have pushed and pulled on an object with a constant force and calculated the work needed to
displace that object. In most real situations the force on an object can change as it moves.

What happens to the average force needed to stretch a spring from 0 to 1 cm compared to the average force
needed to extend the same spring from 10 to 11 cm? How does the applied force on a spring affect the
amount by which it stretches, i.e., its displacement?

Activity 6: Are Spring Forces Constant?

Hang the spring from a support rod with the large diameter coils in the downward position. Extend the
spring from 0 to 1 cm. Feel the force needed to extend the spring. Extend the spring from 10 to 11 cm. Feel
the force needed to extend the spring again. How do the two forces compare? Are they the same?

The Force and Work Needed to Stretch a Spring

Now we would like to be able to quantify the force and work needed to extend a spring as a function of its
displacement from an equilibrium position (i.e., when it is “unstretched”).

Activity 7: Force vs. Displacement for a Spring

(a) The table below shows the results of a series of measurements of the distance s from the floor to the
position of a mass m hung from a spring like the one you have. Calculate and record the external force,
F..+, and the stretch of the spring, x (= sp — ), for each mass. The last four columns will not be filled in
until you get to Activities 8 and 9.

m (kg) [ 5 (@) | Foar (N) [ @ () | Az () | (@) (0) | (Feat) (N) | AW (3) | Wioral ()
0.0 1.508
0.1 1.390
0.2 1.220
0.3 1.153
0.4 1.032
0.5 0.911
0.6 0.789
0.7 0.669
0.8 0.547
0.8 0.420
1.0 0.301

(b) Using FEzcel, create a graph of F.,; (vertical axis) vs. z. Is the graph linear? If the force, Fi,:, increases
with the displacement in a proportional way, fit the data to find the slope of the line. Insert a copy of the
graph into your notebook. Use the symbol k to represent the slope of the line. What is the value of 7 What
are its units? Note: k is known as the spring constant.

(c) Write the equation describing the relationship between the external force, Fe,., and the total displacement,
x, of the spring from its equilibrium using the symbols F,,;, k, and x.

Note: Any restoring force on an object which is proportional to its displacement is known as a Hooke’s Law
Force. There was an erratic, contentious genius named Robert Hooke who was born in 1635. He played with
springs and argued with Newton.
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Calculating Work when the Force is not Constant

We would like to expand the definition of work so it can be used to calculate the work associated with
stretching a spring and the work associated with other forces that are not constant. A helpful approach is
to plot the average force needed to move an object for each successive displacement Az as a bar graph like
that shown in the figure below. The figure shows a graph representing the average applied force causing
each unit of displacement of an object. This graph represents force that is not constant but not the force
vs. displacement of a typical spring.

Note: The bar graph below is intended to illustrate mathematical concepts. Any similarity between the
values of the forces in the bar graph and any real set of forces is purely coincidental. In general, the force
causing work to be done on an object is not constant.

6 —| Average value plotted at
midpoint of rangeA x.

Ax = width of each
displacement

<Fext >

-

-

Area = <k A X

L
O 1 2 3 4 5 o6 7 8

Activity 8: Force vs. Distance in a Bar Graph

(a) Using your data from Activity 7, calculate the width of each displacement Az, the average position for
each displacement (z), and the average external force (F,,;) for each displacement, and record the values in
the table above. Plot (F,,t) vs. x as a bar graph on the grid below. (Choose appropriate scales for the axes
before making the graph.)

10



1 WORK AND KINETIC ENERGY

Fext™ (N)

X (m)

How can we calculate the work done in stretching the spring? We can use several equivalent techniques: (1)
adding up little pieces of (Feyt)Ax from the above bar graph, (2) finding the area under the “curve” you
created in Activity 7, or (3) using mathematical integration.

All three methods should yield about the same result. If you have studied integrals in calculus you may want
to consult your instructor or the textbook about how to set up the appropriate definite integral to calculate
the work needed to stretch the spring.

Activity 9: Calculation of Work

(a) Calculate the work needed to stretch the spring by adding up small increments of (Feq:) Az (this is AW)
in your table. Also record the running sum in the table and indicate the final value of Wy, below. Don’t
forget to specify units.

Wtotal =

(b) Calculate the work needed to stretch the spring by computing the area under the curve in the graph of
F..+ vs. x that you created in Activity 7.

11



1 WORK AND KINETIC ENERGY

(c) How does adding up the little rectangles in part (a) compare to finding the area under the curve in part
(b)?

Note that in the limit where the 2z values are very small the sum of (F.,;)Az, known by mathematicians as
the Riemann sum, converges to the mathematical integral and to the area under the curve.

Defining Kinetic Energy and Its Relationship to Work

What happens when you apply an external force to an object that is free to move and has no friction forces
on it? Obviously it should experience an acceleration and end up being in a different state of motion. Can
we relate the change in motion of the object to the amount of work that is done on it?

Let’s consider a fairly simple situation. Suppose an object is lifted through a distance s near the surface of
the earth and then allowed to fall. During the time it is falling it will experience a constant force as a result
of the attraction between the object and the earth glibly called the force of gravity. You can use the theory
we have already developed for the gravitational force to compare the velocity of the object to the work done
on it by the gravitational field as it falls through a distance y. This should lead naturally to the definition
of a new quantity called kinetic energy, which is a measure of the amount of “motion” gained as a result of
the work done on the mass.

Activity 10: Equations for Falling v vs. y

(a) An object of mass m is dropped near the surface of the earth. What are the magnitude and direction of
its acceleration ¢?

(b) If the object has no initial velocity and is allowed to fall for a time ¢ under the influence of the gravitational
force, what kinematic equation describes the relationship between the distance the object falls, y, and its
time of fall, t? Assume gy = 0 and take positive down.

(c) Do you expect the magnitude of the velocity to increase, decrease or remain the same as the distance
increases? Note: This is an obvious question!!

(d) Differentiate the equation you wrote down in part (b) to find a relationship between v, the acceleration
g, and time t.

(e) Eliminate ¢ from the equations you obtained in parts (b) and (d) to get an expression that describes how
the velocity, v, of the falling object depends on the distance, y, through which it has fallen.

You can use the kinematic equations to derive the functional relationship you hopefully discovered experimen-

tally in the last activity. If we define the kinetic energy (K) of a moving object as the quantity K = Smo?,

12



1 WORK AND KINETIC ENERGY

then we can relate the change in kinetic energy as an object falls to the work done on it. Note that for an

object initially at rest the initial kinetic energy is K; = 0, so the change in kinetic energy is given by the

difference between the initial and final kinetic energies. AK = Ky — K; = muv?.

Activity 11: Computing Work and Kinetic Energy of a Falling Mass

(a) Suppose the mass of your falling object is 0.35 kg. What is the value of the work done by the gravitational
force when the mass is dropped through a distance of y = 1.2 m?

(b) Use the kinematic equation you derived in Activity 10(e) that relates v and y to find the velocity of the
falling object after it has fallen 1.2 m.

(c) What is the kinetic energy of the object before it is dropped? After it has fallen 1.2 m? What is the
change in kinetic energy, AK, as a result of the fall?

d) How does the work done by the gravitational force compare to the kinetic ener y chan e, AK, of the
object?

Activity 12: The Mathematical Relationship between Work and Kinetic Energy Change In a
Fall

(a) Since our simplified case involves a constant acceleration, write down the equation you derived in Activity
10(e) to describe the speed, v, of a falling object as a function of the distance y which it fell.

(b) Using the definition of work, show that W = mgy when the object is dropped through a distance y.

(c) By combining the equations in parts (a) and (b) above, show that in theory the work done on a mass
falling under the influence of the gravitational attraction exerted on it by the earth is given by the equation
W =AK.

13



1 WORK AND KINETIC ENERGY

(d) You have just proven an example of the work-energy theorem which states that the change in kinetic
energy of an object is equal to the net work done by all the forces acting on it.

W =AK [Work-Energy Theorem|]

Although you have only shown the work-energy theorem for a special case where no friction is present, it
can be applied to any situation in which the net force can be calculated. For example, the net force on an
object might be calculated as a combination of applied, spring, gravitational, and friction forces.

14



2 CONSERVATION OF MECHANICAL ENERGY

2 Conservation of Mechanical Energy?

Name Section Date

Objectives

e To understand the concept of potential energy.

e To investigate the conditions under which mechanical energy is conserved.

Overview

The last unit on work and energy culminated with a mathematical proof of the work-energy theorem for a
mass falling under the influence of the force of gravity. We found that when a mass starts from rest and falls
a distance y, its final velocity can be related to y by the familiar kinematic equation

1
vl% =v? + 29y or 9y =3 (vl% - vf) [Eq. 1]

where vy is the final velocity and v; is the initial velocity of the mass.

We believe this equation is valid because: (1) you have derived the kinematic equations mathematically using
the definitions of velocity and constant acceleration, and (2) you have verified experimentally that masses
fall at a constant acceleration. We then asked whether the transformation of the mass from a speed v; to a
speed vy is related to the work done on the mass by the force of gravity as it falls.

The answer is mathematically simple. Since F,; = mg, the work done on the falling object by the force of
gravity is given by
Wy = Fyy = mgy [Eq. 2]

But according to Equation 1, gy = %vfc - %v?, so we can re-write Equation 2 as

1 1
Wy =mgy = §mvl2c - imv? [Eq. 3]

The %va is a measure of the motion resulting from the fall. If we define it as the energy of motion, or,
more succinctly, the kinetic energy, we can define a work-energy theorem for falling objects:

W=AK [EqA4]

or, the work done on a falling object by the earth is equal to the change in its kinetic energy as calculated
by the difference between the final and initial kinetic energies.

If external work is done on the mass to raise it through a height y (a fancy phrase meaning “if some one picks
up the mass”), it now has the potential to fall back through the distance y, gaining kinetic energy as it falls.
Aha! Suppose we define potential energy to be the amount of external work, We,, needed to move a mass
at constant velocity through a distance y against the force of gravity. Since this amount of work is positive
while the work done by the gravitational force has the same magnitude but is negative, this definition can
be expressed mathematically as

U=Wezt = mgy [Eq 5]

Note that when the potential energy is a maximum, the falling mass has no kinetic energy but it has a
maximum potential energy. As it falls, the potential energy becomes smaller and smaller as the kinetic
energy increases. The kinetic and potential energy are considered to be two different forms of mechanical

21990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions
of this material may have been modified locally and may not have been classroom tested at Dickinson College.
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2 CONSERVATION OF MECHANICAL ENERGY

energy. What about the total mechanical energy, consisting of the sum of these two energies? Is the total
mechanical energy constant during the time the object falls? If it is, we might be able to hypothesize a law
of conservation of mechanical energy as follows: In some systems, the sum, E, of the kinetic and potential
energy is a constant. This hypothesis can be summarized mathematically by the following statement.

E = K + U = constant [Eq. 6]

The idea of mechanical energy conservation raises a number of questions. Does it hold quantitatively for
falling masses? How about for masses experiencing other forces, like those exerted by a spring? Can we
develop an equivalent definition of potential energy for the mass-spring system and other systems and re-
introduce the hypothesis of conservation of mechanical energy for those systems? Is mechanical energy
conserved for masses experiencing frictional forces, like those encountered in sliding?

In this unit, you will explore whether or not the mechanical energy conservation hypothesis is valid for a
falling mass.

Activity 1: Mechanical Energy for a Falling Mass
Suppose a ball of mass m is dropped from a height h above the ground.

(a) Where is U a maximum? A minimum?

(b) Where is K a maximum? A minimum?

(c) If mechanical energy is conserved what should the sum of K + U be for any point along the path of a
falling mass?

Mechanical Energy Conservation

How do people in different reference frames near the surface of the earth view the same event with regard to
mechanical energy associated with a mass and its conservation? Suppose the president of your college drops
a 2.0-kg water balloon from the second floor of the administration building (10.0 meters above the ground).
The president takes the origin of his or her vertical axis to be even with the level of the second floor. A
student standing on the ground below considers the origin of his coordinate system to be at ground level.
Have a discussion with your classmates and try your hand at answering the questions below.

Activity 2: Mechanical Energy and Coordinate Systems

(a) What is the value of the potential energy of the balloon before and after it is dropped according to the
president? According to the student? Show your calculations and don’t forget to include units!

The president’s perspective is that y = 0.0 m at ¢ = 0 s and that y = —10.0 m when the balloon hits the
student):

U, =

16



2 CONSERVATION OF MECHANICAL ENERGY

Uy =

The student’s perspective is that y = 10.0 m at t = 0 s and that y = 0.0 m when the balloon hits:

Note: If you get the same potential energy value for the student and the president, you are on the wrong
track!

(b) What is the value of the kinetic energy of the balloon before and after it is dropped according to the
president? According to the student? Show your calculations. Hint: Use a kinematic equation to find the
velocity of the balloon at ground level.

President’s perspective:

K; =

Ky =

Student’s perspective:

Note: If you get the same values for both the student and the president for values of the kinetic energies you
are on the right track!

(c) What is the value of the total mechanical energy of the balloon before and after it is dropped according
to the president? According to the student? Show your calculations. Note: If you get the same values for

Student’s perspective:

E;, =

Er =

(d) Why don’t the two observers calculate the same values for the mechanical energy of the water balloon?

17



2 CONSERVATION OF MECHANICAL ENERGY

(e) Why do the two observers agree that mechanical energy is conserved?

Activity 3: Energy Analysis for a Falling Mass
(a) Perform a video analysis of one of the movies which can be found at
http://facultystaff.richmond.edu/"ggilfoyl/genphys/IQS/projectiles/links.html

to obtain the vertical position of the the ball as a function of time. Check with your instructor to see which
movie to use. Make sure you scale the graph. See the Appendix for details on video analysis.

(b) Calculate the vertical distance the ball moves during the time intervals between adjacent frames. Suppose,
for example, your time data are in column A and your vertical position data are in column D and the first entry
is in row 14. Click in row 14 of an empty column like column N. In the formula box above the spreadsheet
table enter ‘=D15-D14’ (don’t include the quotation marks) and hit Return. This will calculate the distance
the ball covered in going from the first entry in row 14 to the second entry in row 15. Next, click on the
new entry you just made. You should see a small box in the lower right corner of the cell. Grab it and
drag it straight down to the second-to-last row of your data and release. You should now see the distance
covered between adjacent entries in all the rows above. If you don’t see this consult your instructor. Label
the column dy (m). Verify the results for one or two cells. Why did you drag down to the second-to-last cell
and not the last one?

(c) Calculate the average velocity for each time interval. To do this, recall our example above. If you
calculated the difference in vertical position between adjacent frames in column N starting in row 14, then
click in column 0 row 14. In the formula box above the spreadsheet table enter ‘=N14/(A15-A14)’ and hit
Return. This will calculate the average velocity going from cell 014 to cell 015. We will use this as an
approximate measure of the instantaneous velocity. Last, click on the new entry you just made. You should
see a small box in the lower right corner of the cell. Grab it and drag it straight down to the second-to-last
row of your data and release. You should now see the velocity in all the rows above. If you don’t see this
consult your instructor. Label the column v (m/s). Verify the results for one or two cells.

(d) Calculate the kinetic energy for each time interval (the mass of the ball is m = 0.058 kg). To do this,
recall our example above. If you calculated the velocity in column 0 starting in row 14, then click in column
P row 14. In the formula box above the spreadsheet table enter ‘=0.5%0.058*014*014’ and hit Return. This
will calculate the kinetic energy for cell 014. Last, click on the new entry you just made. You should see a
small box in the lower right corner of the cell. Grab it and drag it straight down to the second-to-last row
of your data and release. You should now see the kinetic energy in all the rows above. If you don’t see this
consult your instructor. Label the column K(J). Verify the results for one or two cells.

(e) Calculate the potential energy U for each frame using the same techniques you used above. Label the
column U(J). Verify the results for one or two cells.

(f) Calculate the total energy E = K 4 U for each frame. Label the column E(J). Verify the results for one
or two cells.

(g) Create a graph of K, U, and F vs. time. Put all three on the same graph. Print the graph and put a
copy in your notebook.

(h) Does mechanical energy appear to be conserved within experimental uncertainties? How would you
quantitatively estimate the value of the experimental uncertainty? Once you establish the method apply it
to your data.

18



3 FORCE AND MOMENTUM CONSERVATION

3 Force and Momentum Conservation?

Name Section Date

Objectives

e To understand the definition of momentum and its vector nature and its relationship to Newton’s
second law.

e To develop the concept of impulse to explain how forces act over time when an object undergoes a
collision.

e To use Newton’s second law to develop a mathematical equation relating impulse and momentum
change for any object experiencing a force.

e To formulate the Law of Conservation of Momentum as a theoretical consequence of Newton’s laws
and to test it experimentally.

Overview

In the next few units we will explore the forces of interaction between two or more objects and study the
changes in motion that result from these interactions. We are especially interested in studying collisions
and explosions in which interactions take place in fractions of a second or less. Early investigators spent a
considerable amount of time trying to observe collisions and explosions, but they encountered difficulties.
This is not surprising, since the observation of the details of such phenomena requires the use of instrumen-
tation that was not yet invented (such as the high speed camera). However, the principles of the outcomes
of collisions were well understood by the late seventeenth century, when several leading European scientists
(including Sir Isaac Newton) developed the concept of “quantity of motion” to describe both elastic collisions
(in which objects bounce off each other) and inelastic collisions (in which objects stick together). These days
we use the word momentum rather than motion in describing collisions and explosions.

We will begin our study of collisions by exploring the relationship between the forces experienced by an
object and its momentum change. It can be shown mathematically from Newton’s laws and experimentally
from our own observations that the integral of force experienced by an object over time is equal to its change
in momentum. This time-integral of force is defined as a special quantity called impulse, and the statement
of equality between impulse and momentum change is known as the impulse-momentum theorem.

Apparatus
Dynamics carts (4) and | 2 force probes (force sen- | Science Workshop 750 Inter-
track sors) face
Graphing and curve fit- | Circular bubble level DataStudio software (Two
ting software (Ezcel) Force Probes application)
Weights

Defining Momentum

In this session we are going to develop the concept of momentum to predict the outcome of collisions. But
you don’t officially know what momentum is because we haven’t defined it yet. Lets start by predicting what
will happen as a result of a simple one-dimensional collision. This should help you figure out how to define
momentum to enable you to describe collisions in mathematical terms.

31990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions
of this material may have been modified locally and may not have been classroom tested at Dickinson College.
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3 FORCE AND MOMENTUM CONSERVATION
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It’s early fall and you are driving along a two lane highway in a rented moving van. It is full of all of your
possessions so you and the loaded truck were weighed in at 8000 Ibs. You have just slowed down to 15 MPH
because you’re in a school zone. It’s a good thing you thought to do that because a group of first graders is
just starting to cross the road. Just as you pass the children you see a 2000 1b sports car in the oncoming
lane heading straight for the children at about 80 MPH. What a fool the driver is! A desperate thought
crosses your mind. You figure that you just have time to swing into the oncoming lane and speed up a bit
before making a head-on collision with the sports car. You want your truck and the sports car to crumple
into a heap that sticks together and doesn’t move. Can you save the children or is this just a suicidal act?
For simulated observations of this situation you can use two carts of different masses set up to stick together
in trial collisions.

Activity 1: Can You Stop the Car?

(a) Predict how fast you would have to be going to completely stop the sports car. Explain the reasons for
your prediction.

(b) Try some head on collisions with the carts of different masses and without a force sensor attached to
simulate the event. Describe some of your observations. What happens when the less massive cart is moving
much faster than the more massive cart? Much slower? At about the same speed?

(c) Based on your intuitive answers in parts (a) and (b) and your observations, what mathematical definition
might you use to describe the momentum (or motion) you would need to stop an oncoming vehicle traveling
with a known mass and velocity?

Just to double check your reasoning, you should have come to the conclusion that momentum is defined by
the vector equation
p =mv.
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3 FORCE AND MOMENTUM CONSERVATION

Expressing Newton’s Second Law Using Momentum

Originally Newton did not use the concept of acceleration or velocity in his laws. Instead he used the term
“motion,” which he defined as the product of mass and velocity (a quantity we now call momentum). Let’s
examine a translation from Latin of Newton’s first two laws (with some parenthetical changes for clarity).

Newton’s First Two Laws of Motion

1. Every body continues in its state of rest, or of uniform motion in a right line, unless it is compelled to
change that state by forces impressed on it.

2. The (rate of) change of motion is proportional to the motive force impressed: and is made in the
direction in which that force is impressed.

The more familiar contemporary statement of the second law is that the net force on an object is the product
of its mass and its acceleration where the direction of the force and of the resulting acceleration are the same.
Newton’s statement of the law and the more modern statement are mathematically equivalent, as you will
show.

Activity 2: Re-expressing Newton’s Second Law

(a) Write down the contemporary mathematical expression for Newton’s second law relating net force to
mass and acceleration. Please use vector signs and a summation sign where appropriate.

(b) Write down the definition of instantaneous acceleration in terms of the rate of change of velocity. Again,
use vector signs.

. . . dv __ d(mv)
(c) If an object has a changing velocity and a constant mass then m&7 = =5~

Explain.

d
(d) Show that > F = ma = 2.

dp

(e) Explain in detail why Newton’s statement of the second law and the mathematical expression ) F = B

are two representations of the same statement, i.e., are logically equivalent.

Predicting Interaction Forces between Objects

We recently focused our attention on the change in momentum that an object undergoes when it experiences
a force that is extended over time (even if that time is very short!). Since interactions like collisions and
explosions never involve just one object, we would like to turn our attention to the mutual forces of interaction
between two or more objects. As usual, you will be asked to make some predictions about interaction forces
and then be given the opportunity to test these predictions.
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3 FORCE AND MOMENTUM CONSERVATION

Activity 3: Predicting Interaction Forces

(a) Suppose the masses of two objects are the same and that the objects are moving toward each other at
the same speed so that

mi1 =mo and vy = —vy

Predict the relative magnitudes of the forces between object 1 and object 2. Place a check next to your
prediction!

Object 1 exerts more force on object 2.
The objects exert the same force on each other.
Object 2 exerts more force on object 1.

(c) Suppose the mass of object 1 is much less than that of object 2 and that it is pushing object 2 that has
a dead motor so that both objects move in the same direction at speed v.

mp < mg and Vv = vy

Predict the relative magnitudes of the forces between object 1 and object 2. Place a check next to your
prediction.

Object 1 exerts more force on object 2.
The objects exert the same force on each other.

Object 2 exerts more force on object 1.
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(d) Suppose the mass of object 1 is greater than that of object 2 and that the objects are moving toward
each other at the same speed so that

m1 >mo and vy = —vy

Predict the relative magnitudes of the forces between object 1 and object 2. Place a check next to your
prediction.

Object 1 exerts more force on object 2.
The objects exert the same force on each other.
Object 2 exerts more force on object 1.

(e) Suppose the mass of object 1 is greater than that of object 2 and that object 2 is moving in the same
direction as object 1 but not quite as fast so that

my > me and vy > Vo

mosguito

Predict the relative magnitudes of the forces between object 1 and object 2. Place a check next to your
prediction.

Object 1 exerts more force on object 2.
The objects exert the same force on each other.

Object 2 exerts more force on object 1.
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3 FORCE AND MOMENTUM CONSERVATION

(g) Provide a summary of your predictions. What are the circumstances under which you predict that one
object will exert more force on another object?

Measuring Mutual Forces of Interaction

In order to test the predictions you made in the last activity you can study gentle collisions between two
force probes attached to carts. You can strap additional masses to one of the carts to increase its total
mass so it has significantly more mass than the other. If a compression spring is available you can set up
an “explosion” between the two carts by compressing the spring between the force probes on each cart and
letting it go. You can make and display the force measurements with the Two Force Probes application in
the 131 Workshop submenu. You can also determine the areas under the force vs. time graphs to find the
impulses experienced by the carts during the collisions. See Appendix B Introduction to DataStudio
for instructions on finding the area under a curve.

Activity 4: Measuring Collision Forces

(a) Use the two carts with force sensors to explore various situations that correspond to the predictions you
made about mutual forces. Your goal is to find out under what circumstances one object exerts more force
on another object. Describe what you did in the space below and attach a printout of at least one of your
graphs of force 1 vs. time and force 2 vs. time.

(b) What can you conclude about forces of interactions during collisions? Are there any circumstances under
which one object experiences a different magnitude of force than another during a collision? How do the
magnitudes and directions of the forces compare on a moment by moment basis in each case? Were the
predictions you made correct? If not, explain why.

(c) Do your conclusions have anything to do with Newton’s third law?
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3 FORCE AND MOMENTUM CONSERVATION

(d) How does the vector force due to object 1 acting on object 2 compare to the force of object 2 acting
on object 1 in each case? Are they the same in magnitude or different? Do they have the same sign or a
different sign?

Newton’s Laws and Momentum Conservation

In your investigations of interaction forces, you should have found that the forces between two objects are
equal in magnitude and opposite in sign on a moment by moment basis for all the interactions you studied.
This is of course a testimonial to the seemingly universal applicability of Newton’s third law to interactions
between ordinary masses. You can combine the findings of the impulse-momentum theorem (which is really
another form of Newton’s second law since we derived it mathematically from the second law) to derive the
Law of Conservation of Momentum shown below.

Law of Conservation of Momentum

Z P = P1i + P2i = P1f + P2y = constant in time

where 1 refers to object 1 and 2 refers to object 2 and i refers to the initial momenta and f to the final
momenta.

Activity 5: Deriving Momentum Conservation

(a) What did you conclude in the last activity about the magnitude and sign of the force on object 1 due to
object 2 and vice versa when two objects interact?

(b) Since you have already verified experimentally that Newton’s Third Law holds, what can you conclude
about how the change in momentum of object 1, Api, as a result of the interaction compares to the change
in momentum of object 2, Aps, as a result of the interaction?

(c) Use the result of part (b) to show that the Law of Conservation of Momentum holds for a collision, i.e.
> P = P1i + P2i = P1y + P2y — constant in time.

In the next few units you will continue to study one- and two-dimensional collisions using momentum
conservation. Right now you will attempt to test the Law of Conservation of Momentum for a simple
situation by using video analysis. To do this you will make and analyze a video movie in which two carts of
different masses undergo a one-dimensional elastic collision. You may not be able to finish this in class, but
you can complete the project for homework.
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3 FORCE AND MOMENTUM CONSERVATION

Testing Momentum Conservation

You just used theoretical grounds to derive momentum conservation. This idea still must be tested against
experiment. You will make this test by colliding two carts on a track and recording and analyzing their
motion before and after they hit.

Activity 6: Colliding Carts
(a) Perform a video analysis of one of the movies which can be found at
http://facultystaff.richmond.edu/"ggilfoyl/genphys/IQS/collisions/links.html

to obtain the positions of the the carts as a function of time. Check with your instructor to see which movie
to use. Make sure you scale the graph. See the Appendix for details on video analysis.

(b) Determine the position of both carts (the target and the projectile) during the motion. To do this task
follow the instructions in Appendix D: Video Amnalysis for recording and calibrating the video data.
Mark two objects on each frame; click once on the projectile cart and once on the target cart. The data
table should contain five columns with the values of time, x and y positions of the projectile cart, and x
and y positions of the target cart. Note: Since this is a horizontal 1D collision the y-coordinates are of no
interest. They should be constant for each frame. If they are not, consult your instructor.

(c) Create graphs of position versus time for both carts. See Appendix C: Introduction to Excel for
more details. Print the graphs and include them with this unit.

(d) Use your data to calculate the momenta of carts 1 and 2 before the collision.

(e) Use the data to calculate the momenta of carts 1 and 2 after the collision.

(f) Using the results of parts (d) and (e), calculate the total momentum before and after the collision. Also
calculate the difference between the total momentum before and after the collision (py — p;) and the percent
difference, and record them below. Go around to the other lab groups and get their results for the percent
difference (py — pi)/p:;- Make a histogram of the results you collect and calculate the average and standard
deviation. For information on making histograms, see Appendix C. For information on calculating the

26
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average and standard deviation, see Appendix A. Record the average and standard deviation here. Attach
the histogram to this unit.

(g) What is your expectation for the difference between the initial and final momentum? Do the data from
the class support this expectation? Use the average and standard deviation for the class to quantitatively
answer this question.

(h) What does the histogram of the class data tell you? Be quantitative in your answer.

(i) Within the limits of experimental uncertainty, is momentum conserved (i.e., is the total momentum of
the two cart system the same before and after the collision)? Be quantitative in your answer.
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4 Heat, Temperature, and Internal Energy

Name Section Date

Objective

e To investigate the relationship between heat and temperature.

Apparatus
Glass beaker Hot plate Ice
Data Studio software | temperature probe | Clamp and stand
Safety goggles stirrers

Temperature of a Substance as a Function of Heat Transfer

As part of our quest to understand heat energy transfer, temperature, and internal energy of a substance,
let’s consider the temperature change as ice is changed to water and then to steam.

Activity 1: Predicting T vs. t for Water

Suppose you were to add heat at a constant rate to a container of ice water at 0°C until the water begins
to boil. Sketch the predicted shape of the heating curve on the graph below using a dashed line. Mark the
points at which the ice has melted and the water begins to boil.
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Activity 2: Measuring T vs. t for Water
(a) To test your prediction:

1. Fill the glass beaker at least half full of ice water and set it on top of the hot plate.

2. Suspend the temperature probe so that the end is submerged in the ice water but not touching the
side or bottom of the beaker. You will need to use the clamp and stand to do this.
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4 HEAT, TEMPERATURE, AND INTERNAL ENERGY

3. Open the Heat, Temp, & Internal Energy application in the 132 Workshop folder on the Start menu.

4. Turn on the hot plate and click the Start button on the monitor to begin recording data. The
temperature of the water will be recorded on the graph shown on the monitor. While there is still ice,
stir gently.

5. After the water begins to boil, turn off the hot plate and stop collecting data using the Stop button
on the monitor.

6. Sketch the shape of the measured heating curve on the above graph using a solid line. Ignore small
variations due to noise and uneven heating. Mark the points at which the ice has melted and the water
begins to boil.

(b) Does your prediction agree with the measured heating curve? If not, what are the differences?

(c) What is the relationship between the temperature and the added heat while the ice is melting?

(d) What is the relationship between the temperature and the added heat after the ice has melted, but before
the water begins to boil?

(e) What is the relationship between the temperature and the added heat while the water is boiling?

(f) If there are regions of the heating curve in which the temperature is not changing, what do you think is
happening to the added heat in these regions?
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5 Calorimetry

Name Section Date

Objective

e To learn to use a method for measuring heat called calorimetry.

e Measure the specific heat of aluminum and the heat of fusion of ice.

Apparatus
Hypsometer and stand | Hot plate Ice
Data Studio software Temperature probe | Clamp and stand
Safety goggles Aluminum pellets Compact scale
Calorimeter Stirrers

Introduction to Calorimetry

Calorimetry is a method for measuring heat. As applied in this experiment, the method involves the mixing
together of substances initially at two different temperatures. The substances at the higher temperature lose
heat and the substances at the lower temperature gain heat until thermal equilibrium is reached.

Activity 1: Statement of Conservation of Energy

If no heat is transferred to the surroundings, what is the relationship between the heat lost by the substances
initially at high temperature and the heat gained by the substances initially at low temperature? Note: This

is simply a statement of conservation of energy.
/ Lid

|
Fiber Rin
/ g

Cup \ / Outer Can

Experimental Equipment

A calorimeter, shown in the above figure, is used in this experiment to minimize the exchange of heat between
the system and the surroundings. The inner calorimeter cup is thermally insulated from the surroundings
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by suspending it on a ring of material with low heat conductivity and surrounding it with a layer of air.
Also the cup is shiny to minimize radiation loss. Hence, if the mixture of substances is placed inside the
calorimeter cup, the heat lost to or gained from the surroundings can be ignored, and the above relationship
can be used. The only part of the calorimeter which is involved in the calculation is the inner calorimeter cup
which contains water and in which an exchange of heat between the hot and cold bodies takes place. The
cup will undergo the same temperature change as the contained water. Of course, an instrument will have
to be introduced to measure the temperature of the system, but the heat gained or lost by the instrument
is small and can be ignored.

Activity 2: Specific Heat of Aluminum
(a) Fill the hypsometer (boiler) at least half full of water and start heating the water.

(b) Determine and record the mass of the hypsometer cup, mj. Then fill it about half full with dry aluminum
pellets. Determine and record the mass of the cup and pellets, my,, and calculate the mass of the pellets,
m,. Record the measurements in the space below.

(c) Fill the plastic beaker with ice water. Open the Calorimetry application in the 132 Workshop folder in
the Start menu and start collecting data. To make sure the temperature probe is working properly place it
in the ice water and check that it is reading approximately 0°C. If not, then consult your instructor.

(d) Place the hypsometer cup in the top of the hypsometer and put the temperature probe into the middle of
the pellets. To do this, remove the pellets from the cup, place the temperature probe in the proper position
(using the clamp and stand), then return the pellets to the cup.

(e) Determine and record the mass of the calorimeter cup, m.. Fill this cup about half full of cold tap water.
Determine and record the mass of the cup and water, m.,,, and calculate the mass of the water, m,,. Then
place the calorimeter cup in the outer can and put the lid on.

(f) When the temperature of the pellets becomes constant, at or near 100°C, record the temperature of the
pellets as T),. Remove the probe from the pellets and put it in the cold water in the calorimeter cup. When
the temperature of the water levels off, record it as T,,.

(g) Now, quickly but carefully, pour the pellets into the water in the calorimeter cup. Stir the water
occasionally with the temperature probe and monitor the temperature of the mixture. When the temperature
levels off, record this value as T. Click the Stop button on the monitor, print your graph of temperature as
a function of time and include it in this unit.
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(h) Write the complete heat equation and solve for the unknown specific heat of the metal. The specific heat
of the calorimeter cup is 900 J/kg-°C.

(i) Collect the other measurements of the specific heat from the other groups in the class. Look up the
accepted value for the specific heat of aluminum and calculate the difference between this value and the
average. Do the two values agree within experimental uncertainties? Comment on possible sources of error.
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6 Kinetic Theory of Ideal Gases*

Name Section Date

Objective

e To derive a relationship between the macroscopic properties of an ideal gas and the microscopic motion
of the unseen atoms that make up the gas.

Apparatus
e A computer with an atomic and molecular motion simulation

Introduction

Do you believe in atoms? Our forefathers believed in the reality of witches. In fact, they thought that they
had good evidence that witches existed, good enough evidence to accuse some people of being witches. We
believe in atoms. Are we truly more scientific than they were?

Activity 1: Why Atoms!?

(a) List reasons why you do or do not believe that matter consists of atoms and molecules, even though you
have never seen them with your own eyes.

(b) What happens when heat energy is being transferred into a substance? If you believe that substances
are made of atoms and molecules, how would you use their existence to explain the change in volume of a
heated gas?

Models of Pressure Exerted by Molecules

So far in physics we have talked about matter as if it were continuous. We didn’t need to invent aluminum
atoms to understand how a ball rolled down the track. But ever since the time of the fifth century B.C.
Greek philosophers Leucippus and Democritus, some thinkers have believed in “atomism”, a picture of the
universe in which everything is made up of tiny “eternal” and “incorruptible” particles, separated by “the
void”. Today, we think of these particles as atoms and molecules.

In terms of every day experience molecules and atoms are hypothetical entities. In just the past 40 years
or so, scientists have been able to "see" molecules using electron microscopes and field ion microscopes.
But long before atoms and molecules could be "seen" experimentally, nineteenth century scientists such as
James Clerk Maxwell and Ludwig Boltzmann in Europe and Josiah Willard Gibbs in the United States used
these imaginary microscopic entities to construct models that made the description and prediction of the
macroscopic behavior of thermodynamic systems possible. Is it possible to describe the behavior of an ideal
gas that obeys the first law of thermodynamics as a collection of moving molecules? To answer this question,
let’s observe the pressure exerted by a hypothetical molecule undergoing elastic collisions with the walls of
a 3D box. By using the laws of mechanics we can derive a mathematical expression for the pressure exerted

41990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions
of this material may have been modified locally and may not have been classroom tested at Dickinson College.
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6 KINETIC THEORY OF IDEAL GASES

by the molecule as a function of the volume of the box. If we then define temperature as being related to the
average kinetic energy of the molecules in an ideal gas, we can show that kinetic theory is compatible with
the ideal gas law and the first law of thermodynamics. This compatibility doesn’t prove that molecules exist,
but allows us to say that the molecular model would enable us to explain the experimentally determined
ideal gas law.

Atomic Motion and Pressure

Consider a spherical gas molecule that has velocity 7" = v,,ﬂ + vyj—i—vzl% and makes perfectly elastic collisions
with the walls of a three-dimensional, cubical box of length, width, and height [. Start the program called
"Atoms in Motion" (in " Physics Applications"). You will see a screen like the one shown below. Experiment
with it for a few moments. The Run and Stop buttons control the processing of the simulation of the gas
atoms while the Step button allows you to watch the ‘movie’ one frame at a time.

Control buttons

Orientation of coordinates

Output of
‘AVG’

1 xi0Mgee

Calculations using: all atoms
Averaged 145973 time steps
Temperature: 197.8 K
Pressure: 10.2 x10° Pa
Volume: 0.216 x10°24 3

Speed Histogram

Grab the corner to spin the cube

Figure 1: Atoms in Motion window.

Can we use the concept of molecules behaving like little billiard balls to explain why the ideal gas law
relationship might hold? In the next activity you are to pretend you are looking under a giant microscope
at a single spherical molecule as it bounces around in a three-dimensional box by means of elastic collisions
and that you can time its motion and measure the distances it moves as a function of time.

If the molecule obeys Newton’s Laws, you can calculate how the average pressure that the molecule exerts
on the walls of its container is related to the volume of the box. The questions we have to consider are
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the following. What is the momentum change as the molecule bounces off a wall? How does this relate
to the change in the velocity component perpendicular to the wall? How often will our molecule "hit the
wall" as a function of its component of velocity perpendicular to the wall and the distance between opposite
walls? What happens when the molecule is more energetic and moves even faster? Will the results of your
calculations based on mechanics be compatible with the ideal gas law?

Activity 2: The Theory of Atomic Motion

(a) Stop the simulation if it’s running and set the number of molecules to one. Do this by clicking on the
ATOM button and getting a dialog box. Enter ‘1’ for the number of Type A atoms and zero for all the
others. Record the mass of the Type A atom. Click OK and the cube should now contain a single atom. If
not, consult your instructor.

(b) The orientation of coordinates can be seen just above the right-hand corner of the cube (consult Figure
1 also). Suppose the molecule moves a distance 2 (across the cube and back) in the z-direction in a time
At,. What is the equation needed to calculate its z-component of velocity in terms of [ and At,?

(c) Suppose the molecule moves a distance 2! in the y-direction in a time At,. What is the equation needed
to calculate its y-component of velocity in terms of I and At,?

(d) Suppose the molecule moves a distance 2! in the z-direction in a time At,. What is the equation needed
to calculate its z-component of velocity in terms of [ and At,?

(e) We will now measure the average time At, for one complete round trip from the left side of the cube
to the right side and back again. Click AVG and you will see some information printed in the color blue on
the right-hand side of the Atoms-in-Motion window (see also Figure 1). The simulation takes small steps in
time and calculates the positions of the atoms at the end of each time step. The number of these time steps
taken is shown on the right-hand side and the size of each time step is printed at the top, right-hand-side
of the window. Using the Step button let the atom in the cube move until it bounces off the left wall of the
cube. Stop the motion and record the number of the time step in the space below.
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(f) Now run or step the simulation until the atom bounces across the cube, hits the right-hand wall, comes
back and strikes the left hand wall again. Stop the motion and record the number of the time step. Calculate
At, and record it below.

(g) Each side of the cube has a length [ = 50 x 10719 m. Combine this with the previous result to determine
vy and record it.

(h) Repeat the above procedure for the top and bottom walls of the cube to get v,.

(i) Rotate the cube by clicking and dragging one of the corners of the cube. Spin it until you can see the
atom bounces between the walls in the direction of the & coordinate. Measure the z component of the speed
of the atom using the same procedure as before.

(j) Write the expression for vt in terms of the z, y, and z components of velocity. (Hint: This is an
application of the 3-dimensional Pythagorean theorem.) Determine vip1q; for your atom. We will use these
results in a little while to calculate the pressure exerted by our one-atom ‘gas’.

(k) Record the value of the pressure and temperature for your ‘gas’ (as printed on the screen).

(1) We would like to eventually find the average kinetic energy of each atom or molecule in a gas so we now
have to think about a gas with many atoms. Since the kinetic energy of a molecule is proportional to the

square of its total speed, you need to show that if on the average v} = v} = vZ, then v7, , = 3v2.
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(m) If the collisions with the wall perpendicular to the = direction are elastic, show that the force exerted

on that wall for each collision is just F, = 2m—xswhere m is the mass of the particles and At, the mean

interval between collisions with the wall. (Hint: Think of the form of Newton’s second law in which force is
defined in terms of the change in momentum per unit time so that F = %.)

Warning: Physicists too often use the same symbol to stand for more than one quantity. In this case, note
that Ap (where “p” is in lower case) indicates the change in momentum, not pressure.

(n) Substitute the expression from part (b) for At, to show that

(o) We have assumed from the beginning that we have a cubical box of edge length I. Show that the pressure
on the wall perpendicular to the x axis caused by the force F, due to one molecule is described by the
following expression.

(p) Let’s say that there are not one but N molecules in the box. What is the pressure on the wall now?

(q) Next, show that if we write the volume of our box as V = [3, and recalling (part (1) above) that

2
Utotal

3

02 —
vE =

we can write the following expression.

MVotal

3V
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(r) Finally, since the average kinetic energy of a molecule is just

I 2
Elﬂn - 2mvtotal

show that the pressure in the box can be written in the following way.

P
3V

(s) Use the previous result to calculate the pressure using viotq;, the mass of the atom, N and V for your
one-atom gas. Compare your result with the pressure you recorded above from the output of the simulation
(part (k) above). Do they agree? Explain any differences.
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7 Applying the Kinetic Theory”®

Name Section Date

Objective

e To derive the relationship between temperature and the kinematic properties of the monatomic molecules
of an ideal gas. We will also calculate the specific heat per mole of an ideal, monatomic gas at constant
volume using the kinetic theory and compare the prediction with data.

Apparatus
e A computer with an atomic and molecular motion simulation

Kinetic Energy, Internal Energy, and Temperature

We have hypothesized the existence of non-interacting molecules to provide the basis for a particle model
of ideal gas behavior. We have shown that the pressure of such a gas can be related to the average kinetic
energy of each molecule:

P = 2M{Ee) o0 Y = 2N (B

Pressure increases with kinetic energy per molecule and decreases with volume. This result makes intuitive
sense. The more energetic the motions of the molecules, the more pressure we would expect them to exert
on the walls. Increasing the volume of the box decreases the frequency of collisions with the walls, since the
molecules will have to travel longer before reaching them, so increasing volume should decrease pressure if
(Eyin) stays the same.

The Molar Specific Heat

The kinetic theory of gases uses the atomic theory to relate the macroscopic properties of gases to the
microscopic features of the atoms and molecules that make up the gas. In this laboratory we will extend the
calculations that we have made so far to include the molar specific heat of an ideal, monatomic gas. The
success of that extension of the theory depends on how well the calculations reproduce the measured heat
capacities of a variety of real (not ideal) gases.

Activity 1: Experimenting with the Gas Simulation Program

Open the Atoms in Motion program (in Physics Applications) on the Start menu. We are first going to
explore the relationship between pressure and volume in our kinetic theory using the simulation.

(a) According to the ideal gas law PV = nRT = NkgT, where R is the universal gas constant and kp
is Boltzmann’s constant. What should happen to the pressure of an ideal gas as its volume increases or
decreases?

(b) We now want to run a more realistic simulation. Under the ATOM menu set the number of Type A
atoms to 50 and set all the others to zero. Click on the BOX button and a new dialog box will appear.
Check the box beside ‘Floor conducts heat’ and set the temperature to 200 K. Notice at the top that the
box width is [ = 50 x 107'° m. We have now set up a situation where one side of the cube is held at a

51990-93 Dept. of Physics and Astronomy, Dickinson College. Supported by FIPSE (U.S. Dept. of Ed.) and NSF. Portions
of this material may have been modified locally and may not have been classroom tested at Dickinson College.
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7 APPLYING THE KINETIC THEORY

constant temperature (e.g. it’s sitting on a stove) so the collisions of the atoms with the floor are no longer
elastic. The remaining sides of the cube do not transfer any energy (they’re insulated) so elastic collisions
still occur at those walls.

Start the simulation and make sure you are averaging the pressure over many time steps. You should see
the number of averaged time steps increasing on the right-hand side of the Atoms-in-Motion window. If you
don’t see this information, click on AVG and it should appear.

(c) What happens to the pressure? What happens to the temperature of the gas? You will find that it can
take several minutes of computer time for the temperature of the gas to reach equilibrium with the floor.
Once the gas temperature is within 8 — 10 K of the floor temperature, we can consider the gas and the floor
to be in thermal equilibrium. Record the volume, pressure and temperature of the gas in the first line of the
table below.

(d) Record the volume, pressure and temperature of the gas for five more volumes of the cube. Change
the volume of the cube using the BOX menu and adjusting the box width. The volume is printed on the
Atoms-in-Motion window. Plot your results and attach the graph to this unit. Are your results consistent
with the ideal gas law and your prediction in part (a)? Are they consistent with the results of Experiment
47

| Volume of Box |  Average Pressure Temperature

(e) In the procedure above you should have found the pressure to be inversely proportional to the volume.
How could you modify your plot to show the pressure is proportional to 1/V? Make such a plot and fit it.
How close is your data to following a straight line? Attach the plot to this unit.

(f) According to the ideal gas law PV = nRT = NkgT. What should happen to the pressure of an ideal
gas as the number of particles increases or decreases? We will explore this idea with the simulation next.
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7 APPLYING THE KINETIC THEORY

(g) Start off with the gas parameters from the last ‘run’ of the simulation. Record the number of atoms,
temperature, and pressure in the table below. Use the ATOM menu to change the number of atoms (or
molecules) in the cube. Start the simulation. What happens to the pressure? Record the pressure and the
number of molecules for four more values of the number of molecules and plot your results. Attach the plot
to this unit. Are your results consistent with the ideal gas law and your prediction in part (f)?

| Number of Molecules | Average Pressure | Temperature

Kinetic Theory and the Definition of Temperature
The model of an ideal gas we have just derived requires that
PV = %N (Ekin)
But we have determined experimentally the ideal gas law:
PV = NkgT

What can we say about the average kinetic energy per molecule for an ideal gas? You can derive a relationship
between temperature and the energy of molecules that serves as a microscopic (i.e. molecular) definition of
temperature.

Activity 2: Microscopic Definition of Temperature

(a) From the two equations above, derive an expression relating (FEj;,) and T. Show the steps in your
derivation.
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7 APPLYING THE KINETIC THEORY

(b) In general, molecules can store energy by rotating or vibrating, but for an ideal gas of point particles
(monatomic gas), the only possible form of kinetic energy is the translational motion of the particles. If we
can ignore potential energy due to gravity or electrical forces, then the internal energy F;,; of a gas of N
particles is Ejt = N (Ejin). Use this to show that for an ideal gas of point particles, E;,; depends only on
N and T. Derive the equation that relates E;,;, N and T. Show the steps.

The microscopic and the macroscopic definitions of temperature are equivalent. The microscopic definition
of temperature which you just derived is fundamental to the understanding of all thermodynamics!

Activity 3: Calculating the Molar Specific Heat

In this section we will generate a series of equations that we will then bring together in order to predict the
molar specific heat at constant volume.

(a) Consider an ideal gas in a rigid container that has a fixed volume. How is the molar specific heat defined
in terms of the heat added Q7

(b) If the gas is heated by an amount @, then how much work is done against the fixed container? Recall
the first law of thermodynamics and incorporate this result into your statement of the first law.

(c) Now use the equations of parts (a) and (b) to relate the change in internal energy AE;,; to the molar
specific heat.
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7 APPLYING THE KINETIC THEORY

(d) Write down an expression for the change in internal energy of the ideal gas in terms of (Fj;, ). (Suggestion:
see part (b) of Activity 2.) How is (Ej;,) related to the temperature? Incorporate this relationship into
your expression for the change in the internal energy. You should find that

AEn; = 3NkpAT

where kp is Boltzmann’s constant and N is the number of molecules in the gas.

(e) Use the equations is parts (c) and (d) to relate the molar specific heat to the number of particles N and
Boltzmann’s constant kg. You should find that

nCV = %NkB

where n is the number of moles.

(f) How is the number of molecules in the gas N related to the number of moles n and Avogadro’s number
N 4?7 Use this expression and the result of part (e) to show

_3 Cy _ 3
CV = QNAICB or Nakp — 2

Since Nakp = R, this can be written as
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7 APPLYING THE KINETIC THEORY

Activity 4: Comparing Calculations and Data

We now want to compare our calculation of the molar specific heat of an ideal, monatomic gas with the
measured molar specific heats of some real gases. The table below lists some of those measurements.

| Molecule | %’ | Molecule | C—g |
He 1.50 cO 2.52
Ar 1.50 Cly 3.08
Ne 1.51 H>O 3.25
Kr 1.49 SO, 3.77
H> 2.48 COo 3.42
Ny 2.51 CH,4 3.25
(0D 2.53

(a) Has our theoretical calculation been successful at all? Which gases appear to be consistent with our
calculation? Which gases are not? How do these two groups of real gases differ?

(b) Can you suggest an explanation for the partial success of the theory? Which one of the original assump-
tions that went into our kinetic theory might be wrong?
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8 STEFAN’S LAW

8 Stefan’s Law

Name Section Date

Objective
e To discover the relationship between temperature and the radiation from a light source.

Introduction

Heat transfer via radiation is an essential process in the flow of energy in the atmosphere so it has a large
impact on climate change. Stefan’s Law relates the power of a radiation source & (the energy radiated
by an object per time) to T, the absolute temperature of the object. In this experiment, you will make
measurements of the power emitted from a hot object, namely a Stefan-Boltzmann Lamp, as a function of
temperature and reveal that function.

Apparatus
Radiation Sensor | Stefan-Boltzmann Lamp | Ammeter (0-3 A)
Ohmmeter (2) Voltmeter (0-12 V) Millivoltmeter
Thermometer Foam insulation

Predictions

(a) The intensity of a light source is the power radiated per area. For your experiment what do you think
will happen to the intensity (and the emitted power) of the lamp as the filament you turn up the voltage
and it heats up? Explain your guess.

(b) How do you expect the intensity (and the power) to be related to the temperature 77 Will it be linear,
exponential (e4T), a power law (T™), or something else?

Activity 1: Measuring Radiation versus Temperature

To make these measurements we need a device to measure the power & emitted from the lamp and some
way to determine the temperature of the lamp. The radiation sensor in the figure converts the light falling
on it into an electrical signal proportional to the power striking the sensor. At the same time the current
flowing through the lamp quickly heats the lamp to an equilibrium temperature. The electrical resistance
R of the lamp changes with temperature in a known way so if we determine R we can correlate it with the
temperature 7.

(a) BEFORE TURNING ON THE LAMP, measure T , the room temperature in degrees Kelvin, (K =° C + 273)
and R,.;, the electrical resistance of the filament of the Stefan-Boltzmann Lamp at room temperature with
the ohmmeter. See Charge Measurements in Appendix E: Instrumentation. Enter your results below.

(b) Set up the equipment as shown in Figure 1. The millivoltmeter should be connected directly to the
binding posts of the Stefan-Boltzmann Lamp. The radiation sensor should be at the same height as the
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8 STEFAN’S LAW

filament, with the front face of the radiation sensor approximately 6 cm away from the filament. The
entrance angle of the radiation sensor should include no close objects other than the lamp. The ammeter to
measure the current is the one on the power supply. Ask you instructor to check the setup before you plug
in the power supply and energize the experiment.

Ammeter
Power Supply
(13 V MAX]) [ ]
I} f/ ' i". 1]
io ®
3 'I W B
Stefan-—
Boltzmann | |
=3 Lamp L"F \ T ~|.
By \ N B
\ s
: . Radiation Sensor . :
Millivaltmeter Voltmeter

I 6. em
Figure 1: Equipment setup for Stefan’s Law.

(c) Use Table 1 to collect your results. Fill the top row with headings V' (volts), I (Amps), & (mV), R
(ohms), R/ Ry, and T' (K). Leave room for at least twelve rows. You can also create this table in Ezcel, but

make sure you save the file and print a copy to put in your notebook.

Table 1: Data table.

(d) Before turning on the power supply turn the voltage dial all the way down (counterclockwise). Now turn
on the power supply. The voltage reading should be zero.

(e) To get the electrical resistance R of the lamp we will measure the voltage V' and the current I through
the lamp and use Ohm’s Law V = IR to extract R. The power & will be measured as a voltage from the
millivoltmeter attached to the radiation sensor. Set the voltage on the power supply, V, to the values in the
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8 STEFAN’S LAW

range 1 — 12 V in steps of two volts. At each voltage setting, record the current I from the ammeter, and
P, the reading on the millivoltmeter.

IMPORTANT: Make each radiation sensor reading quickly. Between readings, place sheets of insulating
foam between the lamp and the radiation sensor, with the silvered surface facing the lamp, so that the
temperature of the radiation sensor stays relatively constant.

Activity 2: Extracting Stefan’s Law

(a) Calculate R, the resistance of the filament at each of the voltage settings with Ohm’s Law R = V/I.
Enter your results in your table.

(b) To determine T, the temperature of the lamp filament at each voltage setting we first need to calculate
the relative resistance R/R,..;. Do this calculation for each entry in your table and enter the results in your
table. Use this ratio and the calibration curve in Figure 2 to find 7". Enter your results in the table.

Temperature versus Resistivity for Tungsten

Relative
Resistivity

_Rr_
R 300k

0 500 1000 1500 2000 2500 3000 3500
Temperature (Kelvin)

Figure 2: Calibration curve to get the filament temperature.

(c) Plot & versus T and fit it. Print your plot and insert it into your notebook. Record the fit here. Is the
plot linear? Does it follow a power law, i.e. & o T™? Does it follow an exponential, i.e. &  e*T'? Record
your answer here.
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(d) To precisely determine the mathematical form of the your data, make a semi-log plot, i.e. plot the
common log of &2 versus T. If the data follow an exponential curve, then they will form a straight line on a
semi-log plot. Show this. Print your plot and insert it into your notebook. Is this plot linear? Do your data
lie on an exponential?

(e) Plot the common log of & versus the common log of T and fit it. This plot can be used to determine if
your data follow a power law. Show this too. Print your plot and insert it into your notebook. Record the
fit here.

(f) How is the slope of the plot you made in part (e) related to the temperature dependence?

(g) How do your results compare with your prediction?

(e) Stefan’s Law is usually expressed as & = gAeT* where o is the Stefan-Boltzmann constant, A is the
surface area of the object, and e is a property of the object called the emissivity. From your analysis what
did you obtain for the exponent on the temperature T'7 How does it compare with the expected value?

(h) Collect the results from the class, find the average and standard deviation, and record them here. Do
the values agree within experimental uncertainties? Comment on possible sources of error.

(i) Clearly state an equation for Stefan’s Law.
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A Treatment of Experimental Data

Recording Data

When performing an experiment, record all required original observations as soon as they are made. By
“original observations” is meant what you actually see, not quantities found by calculation. For example,
suppose you want to know the stretch of a coiled spring as caused by an added weight. You must read a
scale both before and after the weight is added and then subtract one reading from the other to get the
desired result. The proper scientific procedure is to record both readings as seen. Errors in calculations can
be checked only if the original readings are on record.

All data should be recorded with units. If several measurements are made of the same physical quantity, the
data should be recorded in a table with the units reported in the column heading.

Significant Figures

A laboratory worker must learn to determine how many figures in any measurement or calculation are
reliable, or “significant” (that is, have physical meaning), and should avoid making long calculations using
figures which he/she could not possibly claim to know. All sure figures plus one estimated figure are considered
significant.

The measured diameter of a circle, for example, might be recorded to four significant figures, the fourth
figure being in doubt, since it is an estimated fraction of the smallest division on the measuring apparatus.
How this doubtful fourth figure affects the accuracy of the computed area can be seen from the following
example.

Assume for example that the diameter of the circle has been measured as .5264 cm, with the last digit being
in doubt as indicated by the line under it. When this number is squared the result will contain eight digits, of
which the last five are doubtful. Only one of the five doubtful digits should be retained, yielding a four-digit
number as the final result.

In the sample calculation shown below, each doubtful figure has a short line under it. Of course, each figure
obtained from the use of a doubtful figure will itself be doubtful. The result of this calculation should be
recorded as 0.2771 cm?, including the doubtful fourth figure. (The zero to the left of the decimal point
is often used to emphasize that no significant figures precede the decimal point. This zero is not itself a
significant figure.)

(.5264 cm)? = 27709696 cm? = 0.2771 cm?

In multiplication and division, the rule is that a calculated result should contain the same number of significant
figures as the least that were used in the calculation.

In addition and subtraction, do not carry a result beyond the first column that contains a doubtful figure.
Statistical Analysis

Any measurement is an intelligent estimation of the true value of the quantity being measured. To arrive at a
“best value” we usually make several measurements of the same quantity and then analyze these measurements
statistically. The results of such an analysis can be represented in several ways. Those in which we are most
interested in this course are the following:

Mean - The mean is the sum of a number of measurements of a quantity divided by the number of such
measurements. (In other words, the mean is the same thing as what people generally call the “average.”) It
generally represents the best estimate of true value of the measured quantity.

Standard Deviation - The standard deviation (o) is a measure of the range on either side of the mean within
which approximately two-thirds of the measured values fall. For example, if the mean is 9.75 m/s? and the
standard deviation is 0.10 m/s?, then approximately two-thirds of the measured values lie within the range
9.65 m/s? to 9.85 m/s%. A customary way of expressing an experimentally determined value is: Mean+o, or
(9.754 0.10) m/s%. Thus, the standard deviation is an indicator of the spread in the individual measurements,
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and a small o implies high precision. Also, it means that the probability of any future measurement falling
in this range is approximately two to one. The equation for calculating the standard deviation is

> (2 — (2))°
N-1

o =

where x; are the individual measurements, (x) is the mean, and N is the total number of measurements.

% Difference - Often one wishes to compare the value of a quantity determined in the laboratory with the
best known or “accepted value” of the quantity obtained through repeated determinations by a number of
investigators. The % difference is calculated by subtracting the accepted value from your value, dividing by
the accepted value, and multiplying by 100. If your value is greater than the accepted value, the % difference
will be positive. If your value is less than the accepted value, the % difference will be negative. The %
difference between two values in a case where neither is an accepted value can be calculated by choosing
either one as the accepted value.
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B Introduction to DataStudio

Quick Reference Guide

Shown below is the quick reference guide for DataStudio.

What You Want To Do

How You Do It

Button

Start recording data

Click the 'Start’ button or select 'Start Data' on
the Experiment menu {or on tha keyboard
press GTHL - R (Windows) or Command - R
{Mac))

B~ Start

Stop recording {or monitoring) data

Click the 'Stop' button or select 'Stop Data' on
the Experiment menu (or on the keyboard
press CTRL - . {period | {Win) or Command - .
{Mac))

W Stop

Start monitoring data Select 'Monitor Data'on the Experment menu none
{or on the keyboamd press CTRL - M (Win) or
Command - M {Mac])
On the Graph Display In the Graph Toolbar Button

Re-scale the data so it fills the Graph
display window

Click the 'Scale to Fit' button.

Pinpoirt the x- and y-coomdinate
values on the Graph display

Click the 'Smart Tool' button. The coordinates
appear next to the 'Smart Tool".

Zoom In' or 'Zoom Qut'

Click the 'Zoom In' or 'Zoom Out’ buttons.

Magnify a selected portion of the
plotted data

Click the 'Zoom Select' button and drag across
the data section be to magnified.

Create a Calculation

Click the 'Calculate’ button

Add a text note to the Graph

Click the 'Note' button.

Selectfromthe Statistics menu

Click the Statistics menu button

Add or remove a data run

Click the 'Add‘Remove Data’' menu button

Delete something

Click the 'Deleta’ button

Select Graph settings

Click the 'Settings' menu button

Selecting a Section of Data

1. To select a data section, hold the mouse button down and move the cursor to draw a rectangle around

the data of interest. The data in the region of interest will be highlighted.

2. To unselect the data, click anywhere in the graph window.

Fitting a Section of Data

1. Select the section of data to be fitted.
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2. Click on the Fit button on the Graph Toolbar and select a mathematical model. The results of the fit
will be displayed on the graph.

3. To remove the fit, click the Fit button and select the checked function type.
Finding the Area Under a Curve
1. Use the Zoom Select button on the Graph Toolbar to zoom in around the region of interest in the
graph. See the quick reference guide above for instructions.

2. Select the section of data that you want to integrate under.

3. Click the Statistics button on the Graph Toolbar and select Area. The results of the integration will
be displayed on the graph.

4. To undo the integration, click on the Statistics button and select Area.
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C Introduction to Excel

Microsoft Excel is the spreadsheet program we will use for much of our data analysis and graphing. It is a
powerful and easy-to-use application for graphing, fitting, and manipulating data. In this appendix, we will
briefly describe how to use Excel to do some useful tasks.

C.1 Data and formulae

Figure 3 below shows a sample Excel spreadsheet containing data from a made-up experiment. The experi-
menter was trying to measure the density of a certain material by taking a set of cubes made of the material
and measuring their masses and the lengths of the sides of the cubes. The first two columns contain her
measured results. Note that the top of each column contains both a description of the quantity
contained in that column and its units. You should make sure that all of the columns of your data
tables do as well. You should also make sure that the whole spreadsheet has a descriptive title and your
names at the top.

In the third column, the experimenter has figured out the volume of each of the cubes, by taking the cube of
the length of a side. To avoid repetitious calculations, she had Excel do this automatically. She entered the
formula =B5A3 into cell C5. Note the equals sign, which indicates to Excel that a formula is coming. The A
sign stands for raising to a power. After entering a formula into a cell, you can grab the square in the lower
right corner of the cell with the mouse and drag it down the column, or you can just double-click on that
square. (Either way, note that thing you’re clicking on is the tiny square in the corner; clicking somewhere
else in the cell won’t work.) This will copy the cell, making the appropriate changes, into the rest of the
column. For instance, in this case, cell C6 contains the formula =B6A3, and so forth.

Column D was similarly produced with a formula that divides the mass in column A by the volume in column

C.

At the bottom of the spreadsheet we find the mean and standard deviation of the calculated densities (that
is, of the numbers in cells D5 through D8). Those are computed using the formulae =average (D5:D8) and
=stdev(D5:D8).

C.2 Graphs

Here’s how to make graphs in Excel. For those who’ve used earlier version of Excel but not Excel 2007, note
that the locations of some of the menu items have changed, although the basic procedure is similar.

L':;n \ i - = Baokl - Microsoft Excel -BXx
A e Page Layou Data  Review  View  Adddns ® -
== % calibri =1 -l General  + Seinset~  E v A
CHlE T e | [S % 2 veete - | [ 2l &
P g [m oA W || Blromate | 3¢ et S
Clipboard Fant 5| Number Calls Editing
\ 82 - &
A 8 c D £ F G H [
4. Density Experiment A. Einstein, |. Newton, and M. Curie
S m——
3 |Mass (kg) Length (m) Volume (m®) Density (kg/m®)
2
5| 0.00171 0.0132 2.29997E-06  743.4886051
5| o018 0.0275 207969505 759.7295267 |
7| o041 0.0402 6.496485-05  740.4008694 1
3 0.118 0.0538 0.000155721  757.7661137
9
10 Mean of density measurements 750.3462775
1 Std. dev. of density measurements  9.815604026
12
13
1
15
16 o
i 4] Sheet /Shest 7 et 7% | —— | |
Ready [ e

Figure 3: Sample Excel spreadsheet
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First, use the mouse to select the columns of numbers you want to graph. (If the two columns aren’t next to
each other, select the first one, then hold down the control key while selecting the second one.) Then click
on the Insert tab at the top of the window. In the menu that shows up, there is a section called Charts.
Almost all of the graphs we make will be scatter plots (meaning plots with one point for each row of data),
so click on the Scatter icon. You’ll see several choices for the basic layout of the graph. You usually want

the first one, with an icon that looks like this Q Click on this icon, and your graph should appear.

Next, you’ll need to customize the graph in various ways, such as labeling the axes correctly. Everything
you need to do this is in the Chart Tools menu, which should be visible in the upper right portion of the
window. (If you don’t see the words Chart Tools, try clicking on your newly-created graph, and it should
appear.) The most useful items are under the Layout tab, so click on the word Layout under the Chart
Tools menu. Here are some things to do under this menu:

e The most important item here is the Axis Titles menu. You can use this to add labels to the z and
y axes of your graph, if it doesn’t already have them. Edit the text inside of the two axis titles so that
it indicates what’s on the two axes of your graph and the appropriate units.

e It’s probably a good idea to give your graph an overall title as well. The options for doing this are
under Chart Title (not surprisingly).

e If the graph contains only one set of data points, you may wish to remove the legend that appears at
the right side of the graph. After all, the information in the legend is probably already contained in
the title and axis labels, so the legend just takes up space. Go to the Legend menu and click None to
do this.

e Sometimes, you want your graph to contain a best-fit line passing through your data points. To do
this, go to the Trendline menu. The easiest thing to do is to click on More trendline optiomns at the
bottom, which will bring up a dialog box with a bunch of choices. Excel can fit various kinds of curves
through data points, but we almost always want a straight line, so you’ll probably choose the Linear
option. If you want to see the equation that describes this line, check the Display Equation on chart
option near the bottom. Remember that Excel won’t include the correct units on the numbers in this
equation, but you should. Also, Excel will always call the two variables x and y, even though they
might be something else entirely. Bear these points in mind when transcribing the equation into your
lab notebook.

Sometimes, you may want to make a graph in Excel where the x column is to the right of the y column in
your worksheet. In these cases, Excel will make the graph with the x and y axes reversed. There are at
least two ways to fix this problem. Here’s the simpler way: before you make your graph, make a copy of
the y column in the worksheet and paste it so that it’s to the right of the  column. Then follow the above
procedure and everything will be fine. If you don’t want to do that, here’s another way. Click Select data
(near the left-hand side under the Chart Tools menu). In the box that pops up, highlight Series1 and click
Edit. You should see a box that contains entries for Series X values and Series Y values. You want to
swap the entries in those two windows. (But really, it’s much easier to do it the first way.)

C.3 Making Histograms

A histogram is a useful graphing tool when you want to analyze groups of data, based on the frequency at
given intervals. In other words, you graph groups of numbers according to how often they appear. You start
by choosing a set of ‘bins’, i.e., creating a table of numbers that mark the edges of the intervals. You then go
through your data, sorting the numbers into each bin or interval, and tabulating the number of data points
that fall into each bin (this is the frequency). At the end, you have a visualization of the distribution of your
data.

Start by entering your raw data in a column like the one shown in the left-hand panel of Figure 4. Look
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over your numbers to see what is the range of the data. If you have lots of values to sift through you might
consider sorting your data is ascending or descending order. To do this task, choose the column containing
your data by clicking on the letter at the top of the column, go to Data in the menubar, select Sort, and
pick ascending or descending. The data will be rearranged in the order you’ve chosen and it will be easier
to see the range of the data. For an example, see the middle column of data in the left-hand panel of Figure
4. Now to create your bins pick a new column on your spreadsheet and enter the values of the bin edges.
Make sure the bins you choose cover the range of the data. See the left-hand panel of Figure 4 again for an
example.

You now have the ingredients for making the histogram. Go to Data in the menubar, select Data Analysis,
and choose Histogram. You should see a dialog box like the one in the right-hand panel of Figure 4. Click in
the box labeled Input Range and then highlight the column on the spreadsheet containing your data. Next,
click in the box labeled Bin Range and highlight the column on the spreadsheet containing the bins. Under
Output Options, select New Worksheet Ply and give the worksheet a name. Click OK in the Histogram
dialog box. You should now see a new worksheet with columns labeled Bin and Frequency and a new tab
at the bottom with the name you put in the New Worksheet Ply entry. See the left-hand panel in Figure
5. Your original data are still available on another worksheet (probably labeled Sheet1). Now highlight the
Bins and Frequency columns by clicking and dragging across the column headings (the A and B at the top
of the columns in the left-hand panel of Fig. 5). You can then make a graph by following the procedure in
Appendix C.2 above. The only difference is that this time you will choose to make a Column graph instead
of a Scatter graph. Make sure you properly label the axes including the units for each quantity. Results
should look like the right-hand panel of Figure 5.
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Figure 4: Column data and bins (left-hand panel) and dialog box (right-hand panel) for making a histogram
in Excel.
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D

Video Analysis

Making a Movie with “Windows Live Movie Maker”

To make a movie, perform the following steps:

1.

Make sure the camera is connected to a USB port on your computer. Close all windows, applications,
programs, and browsers.

Click the Start button in the lower-left corner of your screen and type ‘movie maker’ in the Search
programs and files box. Once the search results appear, click on Windows Live Movie Maker under
Programs. After movie maker starts, close any pop-up windows that may appear.

Click the Webcam Video button. A webcam video window opens. Enlarge the video frame by
dragging the vertical line on the right side of the video frame.

. Position the camera 2-3 meters from the object you will be viewing. Adjust the camera height and

orientation so that the field of view is centered on the expected region where the object will move.

Place a meter stick or an object of known size in the field of view where it won’t interfere with the
experiment. The meter stick should be the same distance away from the camera as the motion you are
analyzing so the horizontal and vertical scales will be accurately determined. It should also be parallel
to one of the sides of the movie frame. Make sure that the meter stick is not far away from the central
region of field of view, and that it is perpendicular to the line of sight of camera.

One member of your group should perform the computer tasks while the other does the experiment.

To start recording your video, click Record. When you are done, click Stop.

Save the video on your Desktop with a unique name that you can easily identify. The video will be
saved in Windows Media Video format, i.e. with extension wmv. (Do not save the video as a Movie
Maker Project file.)

Analyzing the Movie

To determine the position of an object at different times during the motion, perform the following steps:

1.

Start up Tracker by going to Start — All Programs — Physics Applications — Tracker. When
Tracker starts it appears as shown below. The menu icons and buttons that we will use are identified
by arrows.

Click the Open Video button on the toolbar (see figure below) to import your video. After your
video is imported, Tracker will warn you that the video frames don’t have the same time duration.
This is okay since Windows Live Movie Maker uses a variable frame rate. Click Close on the warning
window to ignore Tracker’s recommendation.

Click the Clip Settings button (see figure below) to identify the frames you wish to analyze. A clip
settings dialog box appears. Here, you only need to identify and set the start and end frames. Leave
everything else in the dialog box unchanged. To find and set the start frame, drag the player’s left
slider to scan forward through the video, and stop when you get to the first frame of interest. Now,
the start frame is set and the corresponding frame number should be displayed in the dialog box. If
not, then click on the Start Frame in the dialog box, enter the number of the frame (printed in the
lower right part of the Tracker window), and click outside the box. Then, click the Play video button
to go to the last frame in the video. Next, drag the player’s right slider to scan backward through
the video to find the last frame of interest. Stop when you get to the frame of interest. Now, the end
frame is also set and the corresponding frame number should be displayed in the dialog box. If not,
then click on the End Frame in the dialog box, enter the number of the frame, and click outside the
box. Finally, click the OK button to close the dialog box, and then click the player’s Return button
to return to the start frame.
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Figure 6: Initial Tracker window for video analysis.

4. Click the Calibration button (see the figure) and select the calibration stick. A blue calibration
line appears on the video frame. Drag the ends of this blue line to the ends of your calibration meter
stick. Then click the readout box on the calibration line to select it. Enter the length of the meter
stick in this box (without units). For example, if your calibration meter stick is 1.00 meter long, enter
1.00 in the box and then click outside the box to accept the value or hit Return. At this point, you
can right-click the video frame to zoom in for more accurate adjustment of the ends of the calibration
stick. Right-click the video again to zoom out.

5. Click the Axes button (see the figure) to set the origin and orientation of the x-y coordinate axes.
Drag the origin of the axes to the desired position (in most cases the initial position of the object of
interest). Click the video outside the origin to fix the position of the origin. To change the orientation
(angle) of the axes, drag the x axis. Click the video to fix the new orientation.

6. Click the Create button (see the figure) to track the object of interest in the video. From the menu of
choices select Point Mass for the track type. Make sure the video is at the start frame, which shows
the initial position of the object of interest. Mark this position by holding down the shift key and
clicking the mouse (crosshair cursor) on the object. As the position is marked, the video automatically
advances to the next frame. Similarly, mark the position of the object on this and subsequent frames
by holding down the shift key and clicking the mouse. Do not skip any frames.

After marking the position on the end frame, you can adjust any one of the marked positions. Advance
the video to the frame where you would like to make a fine adjustment. Right-click the video frame to
zoom in and drag the marked position with the mouse.

If you would like to track additional objects, repeat the procedure outlined here for each object.
7. Plotting and Analyzing the Tracks: The track data (position versus time) are listed in the Table
View and plotted in Plot View sections of the Tracker screen. Click the vertical axis label of the plot

to change the variable plotted along that axis. To plot multiple graphs, click the Plot button, located
above the plot, and select the desired number.

98



D VIDEO ANALYSIS

Right-click on a plot to access display and analysis options in a pop-up menu. To fit your data to a
line, parabola, or other functions, select the Analyze option. On the Data-Tool window that opens
up, click on the Analyze tab at the top of the plot and check the Curve Fits box. Select the fit type
from the Fit Name drop-down menu. Make sure the Auto Fit box is checked.

Note that the curve fitter fits the selected function to the data in the two leftmost columns of the
displayed data table. The leftmost column, identified by a yellow header cell, defines the independent
variable, and the second leftmost column, identified by a green header cell, defines the dependent
variable. So, to fit the data in other columns, their corresponding headers must be dragged to the two
leftmost columns.

8. Printing and Exporting Data: Track data can also be easily exported to Excel for further analysis
by copying the data from the data table to the clipboard and pasting into Excel. Click the Table
button, located above the data table in the table view section of the main screen, and select from the
displayed list the data you would like to display in the data table. Select the desired data in the table
by clicking and dragging, then right-click and choose Copy Data from the pop-up menu. Now, paste
the data into Excel. To print out the displayed plot or data table on Tracker’s screen, right-click on
the plot or table and choose Print from the pop-up menu.
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E Instrumentation

Introduction

Being both quantitative and experimental, physics is basically a science of measurement. A great deal of
effort has been expended over the centuries improving the accuracy with which the fundamental quantities
of length, mass, time, and charge can be measured.

It is important that the appropriate instrument be used when measuring. Ordinarily, a rough comparison
with a numerical scale, taken at a glance and given in round numbers, is adequate. Increasing precision,
though, requires a more accurate scale read to a fraction of its smallest division. The “least count” of an
instrument is the smallest division that is marked on the scale. This is the smallest quantity that can be
read directly without estimating fractions of a division.

Even at the limit of an instrument’s precision, however, accidental errors — which cannot be eliminated —
still occur. These errors result in a distribution of results when a series of seemingly identical measurements
are made. The best estimate of the true value of the measured quantity is generally the arithmetic mean or
average of the measurements.

Other errors, characteristic of all instruments, are known as systematic errors. These can be minimized by
improving the equipment and by taking precautions when using it.

Length Measurement

Three instruments will be available in this class for length measurements: a ruler (one- or two-meter sticks,
for example), the vernier caliper, and the micrometer caliper.

The Meter Stick

A meter stick, by definition, is 1 meter (m) long. Its scaled is divided, and numbered, into 100 centimeters
(cm). Each centimeter, in turn, is divided into 10 millimeters. Thus 1 cm = 1072 m, and 1 mm = 10! cm
= 1073 m.

When measuring a length with a meter stick, different regions along the scale should be used for the series
of measurements resulting in an average value. This way, non-uniformities resulting from the meter stick
manufacturing process will tend to cancel out and so reduce systematic errors. The ends of the stick, too,
should be avoided, because these may be worn down and not give a true reading. Another error which
arises in the reading of the scale is introduced by the positioning of the eyes, an effect known as parallax.
Uncertainty due to this effect can be reduced by arranging the scale on the stick as close to the object being
measured as possible.

The Vernier Caliper

A vernier is a small auxiliary scale that slides along the main scale. It allows more accurate estimates of
fractional parts of the smallest division on the main scale.

On a vernier caliper, the main scale, divided into centimeters and millimeters, is engraved on the fixed part
of the instrument. The vernier scale, engraved on the movable jaw, has ten divisions that cover the same
spatial interval as nine divisions on the main scale: each vernier division is % the length of a main scale
division. In the case of a vernier caliper, the vernier division length is 0.9 mm. [See figures below.]

1.23

Examples of vernier caliper readings
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To measure length with a vernier caliper, close the jaws on the object and read the main scale at the position
indicated by the zero-line of the vernier. The fractional part of a main-scale division is obtained from the
first vernier division to coincide with a main scale line. [See examples above.]

If the zero-lines of the main and vernier scales do not coincide when the jaws are closed, all measurements
will be systematically shifted. The magnitude of this shift, called the zero reading or zero correction, should
be noted and recorded, so that length measurements made with the vernier caliper can be corrected, thereby
removing the systematic error.

The Micrometer Caliper

A micrometer caliper is an instrument that allows direct readings to one hundredth of a millimeter and
estimations to one thousandth of a millimeter or one millionth of a meter (and, hence, its name). It is
essentially a carefully machined screw housed in a strong frame. To measure objects, place them between
the end of the screw and the projecting end of the frame (the anvil). The screw is advanced or retracting
by rotating a thimble on which is engraved a circular scale. The thimble thus moves along the barrel of the
frame which contains the screw and on which is engraved a longitudinal scale divided in millimeters. The
pitch of the screw is 0.5 mm, so that a complete revolution of the thimble moves the screw 0.5 mm. The
scale on the thimble has 50 divisions, so that a turn of one division is % of 0.5 mm, or 0.01 mm.

Advance the screw until the object is gripped gently. Do not force the screw. A micrometer caliper is a
delicate instrument.

To read a micrometer caliper, note the position of the edge of the thimble along the longitudinal scale and
the position of the axial line on the circular scale. The first scale gives the measurement to the nearest whole
division; the second scale gives the fractional part. It takes two revolutions to advance one full millimeter,
so note carefully whether you are on the first or second half of a millimeter. The result is the sum of the two
scales. (See examples below).
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As with the vernier caliper, the zero reading may not be exactly zero. A zero error should be checked for
and recorded, and measurements should be appropriately corrected.

Mass Measurement

Three kinds of instruments will be available to determine mass: a digital scale and two types of balances.
The operation of the first instrument is trivial, and so will not be explained here.
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Please understand that with each of these instruments we are really comparing weights, not masses, but the
proportionality of weight and mass allows the instruments to be calibrated for mass.

The Equal-Arm Balance

The equal-arm balance has two trays on opposite sides of a pivot. The total mass placed on one tray required
to balance the object on the other gives the mass of the object. Most equal-arm balances have a slider, as
well, that can move along a scale and allow for greater precision than the smallest calibrated mass available.
Typically, this scale has 0.5 g divisions.

The Triple-Beam Balance

The triple-beam balance, so-called because of its three slider scales, can be read to 0.1 g and estimated to
half that. With an object on the tray, the masses of the different scales are slid to notches until balanced.
Get close with the larger masses first and then fine-adjust with the smallest slider.

Time Measurement

Time measurements in this course will be made either with a computer or with a stop watch. This first is
out of your control.

The Stop Watch

The stop watches you will use in class have a time range of from hours to hundredths of a second. There are
two buttons at the top: a stop/start button and a reset button. The operation of these should be evident,
although once the watch is reset, the reset button also starts the watch (but doesn’t stop it). Please be
aware of this feature.

Charge Measurements

The magnitude of charge is among the most difficult measurements to make. Instead a number of indirect
measurements are undertaken to understand electric phenomena. These measurements are most often carried
out with a digital multimeter

The Digital Multimeter

The digital multimeters available for laboratory exercises have pushbutton control to select five ac and dc
voltage ranges, five ac and dc current ranges, and six resistance ranges. The ranges of accuracy are 100
microvolts to 1200 volts ac and dc, 100 nanoamperes to 1.999 amperes ac and dc, and 100 milliohms to 19.99
megaohms.

To perform a DC voltage measurement, select the DCV function and choose a range maximum from one of
200 millivolts or 2, 20, 200, or 1200 volts. Be sure the input connections used are V- and COMMON. The
same is true for AC voltage, regarding range and inputs, but the ACV function button should be selected.

For DC current choose DC MA (for DC milliamperes), while for AC current choose AC MA. Your choices
for largest current are 200 microamperes or 2, 20, 200, or 2000 milliamperes. Check that the input are
connected to MA and COMMON.

There are two choices for resistance measurement: Kilohms (k) and Megohms (20M€2). The input con-
nectors are the same as when measuring voltage, namely V-2 and COMMON. The range switches do not
function with the Megohm function, but one of the range buttons must be set. The maximum settings for
Kilohm readings are 2002 or 2, 20, 200, or 2000k(2.
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Calibrating Force Sensors
1. Connect force sensor to Pasco interface (in port “A”).
2. Open the DataStudio application that you will use to perform the lab.

3. With NO force applied to force sensor, press TARE button on side of force sensor. This sets the sensor
to zero. This is the ONLY time you will press the TARE button.

4. Click “Setup”.
5. Click “Calibrate Sensors”.
6. Set 1st calibration point to 0 newtons, press upper “Read from sensor” button.

7. HOLDING SENSOR VERTICALLY (with hook down), hang 200g from sensor, set 2nd calibration point
to 1.96 newtons, press lower “Read from sensor” button.

8. Click “OK”. Force sensor is now calibrated for the rest of your experiment. Close “Calibrate Sensors”
window, close “Setup” window.

9. While still holding the force sensor still, press “Start”. Graph should now show a reading of 1.96 N. Press
“StOp”.

10. Try hanging a different mass from the force sensor; press “Start” and check that it is reading correctly.
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