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1 Einstein Solid

Name Section Date
Objective

To develop a quantum-mechanical model of an elemental solid (e.g. aluminum) and introduce the ideas of
statistical mechanics.

Overview of the Model

One of the earliest successful applications of quantum mechanics was done by Albert Einstein in 1907 when

he developed a model of an elemental solid (i.e. one that consists of a single element from the periodic table

like aluminum, lead, etc.). We start by assuming that each atom in the solid is bound in a square lattice with

each of six neighbors (see Figure 1). Each bond is treated as a simple spring so the mechanical energy for a
single atom is

1 1
E = §m(vﬁ + vl +02) + 5k(ac2 + 9% +2%) (1)

where k is the spring constant of the bond, the coordinates
z, y, and z are relative to the equilibrium position of the
atom and v, vy, and v, are the components of the veloc-
ity. Einstein used an idea pioneered by Max Planck in 1901
and guessed the energy in the solid came in discrete pieces
or quanta that were all the same size. Adding or removing
these quanta heated or cooled the solid. Many years later
the quantum mechanical energy E for a mass on a spring was
found to be

3
E=(ng+ny+n,+ 5)hw (2)

where h is Planck’s constant, w is related to the spring constant k of the bond mentioned above, and n,, ny,
and n, represent the number of quanta associated with each degree of freedom of the spring. The degrees of
freedom here correspond to the three possible directions each atom can vibrate. The size of each energy quantum
is € = hw. The total number of energy quanta in the solid is labeled g4 so the internal energy is E;,; = qae.
We then assume that all microstates of the solid have an equal probability of being populated. A microstate is a
specific arrangement of the quanta on the atoms in the solid.

Activity 1: The Statistics of Matter

Before you embark on building the model of the Einstein solid consider some ideas from your previous study of
gases. You will make some predictions here about the statistical nature of matter that you can refer back to later
on in this unit.

(a) Consider a gas in a container. Would it violate Newton’s Laws or any other physical law if all the particles in
the gas collided in such a way that all of the gas particles ended up in the bottom half of the container leaving
the top half empty?

(b) Is such a scenario likely? Explain.

(c) If you started out with all the gas in the bottom half of the container how likely is it to stay there?
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The questions you answered above are addressing the notion of irreversibility. Many processes in nature appear
to proceed in one ‘direction’ only. When you add milk to coffee it disperses throughout the coffee. After it is
dispersed, the milk never re-concentrates into a blob of milk in the middle of the coffee. These processes go from
a more orderly configuration (a concentrated drop of milk) to a disordered state (milk spread throughout the
liquid). The reverse never happens. We will return to this notion again in this laboratory.

Activity 2: Calculating the Multiplicity of Some ‘Solids’

(a) You will first calculate the configurations of the quanta (the microstates) for a VERY simple solid consisting
of a single atom! The number of atoms for solid A is N4 = 1 so there are three degrees of freedom N, = 3
because there is one degree of freedom for each spatial direction. The atom’s vibration can be decomposed into
three components, one for each direction. Let the ‘solid’ contain two quanta of energy so g4 = 2. Make a table
with the headings n;, ny, and n3 and in each row enter one arrangement of the two quanta. This is a microstate.
Make a table with all of the possible microstates. The multiplicity 4 of the system is the number of all possible
microstates. What is your multiplicity? Record it here.

(b) You can calculate the multiplicity 4 using the expression

(ga +3N4 —1)!

Make the calculation for N4 =1 and g4 = 2. Does this agree with your result in part 2.a?

(c) Now do the same thing for a different ‘solid’. This time for solid B, let Ng = 2 (two whole atoms!) and
g = 1. How many degrees of freedom does solid B have? Make a table analogous to the one in part 2.a on the
same sheet as before. What is the multiplicity of solid B? Record it here. Use the expression in Activity 2.b to
check your calculation.

Activity 3: Putting the ‘Solids’ Together

When two solids are brought together heat /energy can flow between the two objects. For the model of the Einstein
solid you are building this corresponds to energy quanta (fiw) moving from atom to atom and occupying different
microstates of the combined system.
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(a) Now bring the your solids A and B ‘together’ into a single system. What is N4p the total number of atoms?
What is the number of degrees of freedom of the combined system?

(b) What is the total number of energy quanta g4p for the combined system?

(c) What is the total multiplicity Q45 for the combined system with g4 = 2 and ¢g = 1?7 This is the initial
macrostate of the system. A macrostate is a configuration of the system defined here by the total number of
atoms and quanta in each solid. In this case the macrostate is defined by Ng =1, g4 =2, Ng =2, and g = 1.

(d) Now take the energy quantum in solid B and put it in solid A, i.e., let heat flow from solid B into solid
A. This is now a macrostate where ¢4 = 3 and gg = 0. What is the new multiplicity Q4 for solid A and the
multiplicity Qp for solid B?

(e) What is the multiplicity Q4p for the combined system (solids A and B)?

(f) Remember that a macrostate is defined by the combination of N4, Ng, qa, and gg. Which macrostate had
the greatest multiplicity, (g4 = 2, ¢gg = 1) or (ga = 3, g = 0) (remember that N4 and Npg are the same in each
configuration so we don’t list those parameters here)?

(g) If the energy quanta can move from atom to atom which macrostate (g4 = 2, gg = 1) or (g4 =3, ¢ =0) is
most probable? Why?

(h) If you started out in the (g4 = 3, g = 0) macrostate is it more likely that you will remain in that macrostate
of evolve to the (g4 = 2, ¢g = 1) macrostate? Why?

What you have discovered is a version of the irreversibility mentioned earlier, One macrostate (g4 = 2, gg = 1)
is preferred over the other because it has more microstates than the other. This result depends critically on your
assumption that all states are equally populated.

Activity 4: Using StatMech For More Complex Cases

You should have found in the previous activity that the (g4 = 2, ¢g = 1) macrostate was more likely to occur
and the process proposed in part 3.d is relatively unlikely. In other words, it is more likely for energy to be
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spread evenly throughout the system. This is good news because it means the statistical picture we are painting
is consistent with reality. Remember what happens to the blob of milk in the coffee.

(a) You should realize that making the sorts of calculations you did in Activity 3 above would become rather
painful for say N4 = 300 atoms. In order to push the model further you will use a software packaged called
StatMech to perform the same calculations. To run the program go to the Physics Applications menu and
click on StatMech. You should see a window like the one below. The top of the window has several entry boxes

2. StatMech L -|Oj x
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Figure 2: The StatMech window showing the table of multiplicities for each microstate. Each row corresponds to
a different value of ¢4.

where you can set the number of atoms (N4 and Np) and the total number of energy quanta in the system U.
The parameter U is the total internal energy ;,: in the system in units of € = hw. It is equivalent to the sum
gAaB = g4+ gp- You can also set the number of rows of microstates to print out or choose to view a graph instead
of the table. To test the operation of StatMech redo the calculations of the microstates that you did in Activity
3. Make sure your results in Activity 3 agree with the output of StatMech. You will also see there are other
macrostates that were ignored in Activity 3 for simplicity.

(b) Now run StatMech for the case where N4 = 10, Ng = 20, U = 500. What is the value of g4 for the most
probable microstate? Record it here. Click on the button at the top of the StatMech window and choose graph.
You will see a graph of the table and it should look something like Figure 3. The vertical axis is the probability of
a particular macrostate divided by the maximum probability of any macrostate. The horizontal axis is U /Uror
where Uy is the energy of solid A in units of € (equivalent to g4) and Uror is the total internal energy of the
solid in units of € (equivalent to the total number of quanta g4p). What is the value of Ua/Uror for the most
probable state? How is this value related to the value of ¢4 for the most probable microstate? Also, explain in
words what this plot is showing you.
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Figure 3: The StatMech window showing a graph of the multiplicities as a function of E4/E;,; where E4 = q4hw
and E;,; = QABhUJ = (qA + qB)hw.

(c) How wide is the distribution of microstates? Measure this number by estimating the full-width-half-maximum
(FWHM) from your graph. Do this by finding the largest value on the vertical axis, divide it by two, and find the
two points on either side of the peak where the distribution is equal to that half-maximum. Take the difference
between these two points and this is the FWHM. Record your result here.

(d) Now repeat steps 4.b-c with U = 100,000 and N4 and Np at their last values. What is the most probable
value of Ua /Uror and the FWHM? How have things changed.

(e) Keeping U = 100, 000 now repeat steps 3.b-c, but this time double the values of N4 and Ng. Record the most
probable microstate and the FWHM. Repeat this doubling of the number of atoms in each solid while keeping U
fixed at least 3-4 times. Record the most probable microstate and the FWHM each time along with N4 and Np.
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(f) How does the value of g4 for the most probable microstate change as the number of atoms increases?

(g) How does the FWHM change as the number of atoms increases?

Activity 5: Irreversibility

You will now use the results from the previous Activity to delve into some of the implications of the statistical
mechanics of the Einstein solid.

(a) As the number of atoms increases, what happens to the probability for finding the system in a microstate
different from the most probable microstate? Use the results of your calculations to explain your answer.

(b) When the system is in a microstate far from the most probable one, what is the most likely thing to happen
as energy or heat flows around the system?

(c) For the last calculation what is the probability of the state with the minimum value of g4? In other words
what is the probability that all of the quanta would end up all in solid A? What is the probability of the most
probable state?

(d) Go back to the questions in Activity 1 and look at your answers. Do they still appear to be correct? A
situation where all of the gas particles end up in one part of the container is a macrostate of the system analogous
to the situation in Activity 5.c where all of the quanta end up in one of the solids and not the other. Answer
those questions in Activity 1 again in terms of microstates, macrostates, and probability.

The behavior you are seeing here is for an Einstein solid, but is actually typical for most macroscopic systems.
These systems have a large number of atoms or molecules with a variety of different energy states available. They
evolve to the most probable macrostate and there is essentially no chance to occupy a state far from the most
probable one. When two materials are first put in thermal contact they may be far from the most probable
macrostate, but they equilibrate at that most probable one (where the temperatures are equal) and never go
back. This the irreversibility.

Activity 6: Homework Problems (E - exercise, P - problem)

1. (E) Consider the following ‘gas’. It consists of four atoms in a cubical box. At any instant, there is a 50%
chance of each atom being in the left half of the box (L) or the right half (R). Make a table showing all the
microstates of this system. (Hint: There are 16.) How many macrostates are there? How many microstates
are in each macrostate?
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10.

11.

12.

. (E) Show that for N gas atoms in a box, the number of possible microstates is 2%V when microstates are

defined by whether a given molecule is in the left half of the box or the right half of the box. The volumes
of each half are equal.

(E) Imagine that we have an ideal gas consisting of 15 molecules. We can flip the signs of each of the three
velocity components of a given molecule w without changing its overall energy (and thus without changing
the gas’s macrostate). How many possible patterns of sign choices are there?

(E) Calculate the multiplicity of an Einstein solid with N = 1 and E;,,; = 6¢ by directly listing and counting
the microstates. Check your work by using equation 3.

(E) Calculate the multiplicity of an Einstein solid with N = 1 and E;,,; = 5¢ by directly listing and counting
the microstates. Check your work by using equation 3.

(E) Use equation 3 to calculate the multiplicity of an Einstein solid with N =4 and E;,; = 10e.
(E) Use equation 3 to calculate the multiplicity of an Einstein solid with N = 3 and E;,; = 15¢.

(E) How many times more likely is that the combined system of solids described in the table below will be
found in macropartition 3:3 than in macropartition 0:6, if the fundamental assumption is true?

(E) How many times more likely is it that the combined system of solids describe in the table below will not
be found in macropartition 3:3 than it is to be found in macropartition 0:6, if the fundamental assumption
is true?

Macropartition E4 Ep Qyu Qp QaB
0:6 0 6 1 28 28
1:5 1 5 3 21 63
2:4 2 4 6 15 90
3:3 3 3 10 10 100
4:2 4 2 15 6 90
5:1 5 1 21 3 63
6:0 6 9 28 1 28
Total= 462

Table 1: Possible macropartitions for N4 =1, Ng = 1, E;;,; = 6e.

(E) Consider the system consisting of a pair of Einstein solids in thermal contact. A certain macropartition
has a multiplicity of 3.7 x 101924 while the total number of microstates available to the system in all
macropartitions is 5.9 x 101%42. If we look at the system at a given instant of time, what is the probability
that we will find it to be in our certain macropartition?

(E) Consider the system consisting of a pair of Einstein solids in thermal contact. A certain macropartition
has a multiplicity of 1.2 x 10346, while the total number of microstates available to the system in all
macropartitions is 5.9 x 10352, If we look at the system at a given instant of time, what is the probability
that we will find it to be in our certain macropartition?

(E) Consider the system consisting of a pair of Einstein solids in thermal contact. Imagine that it is initially
in a macropartition that has a multiplicity of 8.8 x 10!23. The adjacent macrostate claser to the equilibrium
macrostate has a multiplicity of 4.2 x 10234, If we look at the system a short later, how many times more
likely is it to have moved to the second macropartition than to have stayed with the first?
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13.

14.

15.

16.

17.

18.

19.

(E) Consider the system consisting of a pair of Einstein solids in thermal contact. Imagine that it is initially
in a macropartition that has a multiplicity of 7.6 x 103235, The adjacent macropartition closer to the
equilibrium macropartition has a multiplicity of 4.1 x 103278, If we look at the system a short time later,
how many times more likely is it to have moved to the second macropartition than to have stayed with the
first?

(P) Suppose you put 100 pennies in a cup, shake it up, and toss them all into the air. (a) After landing,
how many different head-tail arrangements (microstates) are possible for the hundred pennies? (b) What
is the probability of finding exactly 50 heads? (c) 49 heads? (d) 1 head?

(P) You ask your roommate to clean up a mess he or she made in your room. Your roommate refuses,
because cleaning up the mess would violate the second law of thermodynamics, and campus security’s
record of your roommate’s legal violation is already excessive. Gently but firmly explain why complying
will not put your roommate at risk of such an infraction.

(P) The classic statement of Murphy’s law reads, ‘If something can go wrong, it will.” Explain how this
is really a consequence of the second law of thermodynamics. (Hint: What is the entropy of ‘wrong’ in a
given context compared to the entropy of ‘right’?)

(P) Run the StatMech program to answer the questions below.

(a) For two Einstein solids in contact with N4 = Np = 100 and E;,,; = 200e answer the following questions.
(1) How many times more likely is the system to be found in the center macropartition than in the
extreme macropartition where E4 = 0 and Ep = 200¢ (2) What is the range of values that E4 is
likely to have more than 99.98% of the time? (3) if E4 were initially to have the extreme value 0, how
many times more likely is it to move to the next macropartition nearer the center than to remain in
the extreme one?

(b) Answer the same question as in (a) for a run where you scale everything up by a factor of 10, so that
N4 = Np = 1000 and E;,; = 2000€.

(c) Answer the same question as in (a) for a run where N4 = Np = 1000 and E;,,; = 200e. Comment on
the effect that increasing just the size of the system by a factor of 10 has on these answers.

(d) Answer the same question as in (a) for a run where N4 = Np = 100 and E;;,; = 2000e. Comment on
the effect that increasing just the energy available to the system by a factor of 10 has on these answers.

(P) Consider two Einstein solids in thermal contact. The solids have different values of N but are identical in
all other respects. It is plausible, since every atom in the combined system is identical, that in equilibrium
the energy will be distributed among the solids in such a way that the average energy per atom is the
same. Use StatMech to test this hypothesis in the situation where E;,; = 1000e and N4 and Np have
various different values such that N4 + Ng = 1000. (Set Max Rows to 1000 so that you can see every
macropartition).

(a) Is it true in most cases that in the most probable macropartition the solids have energies such that the
average energy per atom in each is the same? Is it strictly true in every case? Answer these questions
by discussing the values N4 and Np you tested, and whether the actual most probable macropartition
is the same as that predicted by the hypothesis.

(b) In any case where the hypothesis does not work, does increasing both N4 and Ng by a factor of 10 or
100 (but leaving U alone) yield a result more or less consistent with the hypothesis?

(¢) Speculate as to the value of this hypothesis in the large-N limit.

(P) For the following questions, you will find that using StatMech is by far the fastest way to calculate the
multiplicity.

(a) What is the entropy of an Einstein solid with 5 atoms and an energy of 15¢? Express your answer as
a multiple of k.
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20.

21.

22.

(b) What is the entropy of an Einstein solid with 50 atoms and an energy of 100e? Express your answer
as a multiple of k.

(P) A certain macropartition of two Einstein solids has an entropy of 305.2k;. The next macropartition
closer to the most probable one has an entropy of 335.5k;. If the system is initially in the first macropartition
and we check it again later, how many times more likely is it to have moved to the other than to have stayed
in the first?

(P) My calculator cannot display e for z > 230. One can calculate e” for larger values of = as follows. Define
y such that = yIn 10. This means that e® = e?!"10 = (" 10)¥ — 10¥ = 10%!»10_ Note that we can calculate
10 raised to a non-integer power (for example, 103.46) as follows: 10346 = 103+0-46 = 103(10°-46) = 2.9x 103.
Use these techniques to solve the following problem. The entropy of the most probably macropartition for
a certain system of Einstein solids is 6025.3k,, while the entropy of an extreme macropartition is only
5755.4k,. What is the probability of finding the system at a given time in the extreme macropartition
compared to that of finding it in the most probable macropartition?

(P) In principle, the entropy of a isolated system decreases a little bit whenever random processes cause
its macropartition to fluctuate away from the most probable macropartition. We can certainly see this
with small systems. But is this really a possibility for a typical macroscopic system? Imagine that we can
measure the entropy of a system of two solids to within 2 parts in 1 billion. This means that we could just
barely distinguish a system that has an entropy of 4.99999999 J /K (eight 9s!) from one that has 5.00000000
J/K. (This is a reasonable entropy for a macroscopic system).

(a) Imagine that the entropy of the equilibrium macropartition is 5.00000000 J/K. Show that the ap-
proximate probability that at any given time later we will find the system in a macropartition with
entropy 4.99999999 J/K (i.e., with an entropy that is only barely measurably smaller) is about
10315,000,000,000,000 times smaller that the probability we will still find it to have entropy 5.00000000
J/K. (Hint: See problem 17.)

(b) Defend the statement that the entropy of an isolated system in thermal equilibrium never decreases.
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2 Entropy and Temperature

Name Section Date
Objective

To explore the connection between the fundamental definition of entropy and temperature.
Overview

Recall our definition of the entropy of a system
S=kpnQ (4)

where kp is Boltzmann’s constant and (2 is the multiplicity or number of microstates. A microstate is defined
by a particular arrangement of energy quanta among the atoms. A macrostate is defined by the total number of
energy quanta ¢ and the number of atoms N. We are building a model of an elemental solid (e.g., like aluminum)
where the total internal energy in the solid Ej,; is described by

Einy = qhw (5)

where A is Planck’s constant divided by 27 and w is a constant that characterizes the strength of the bonds
between the atoms. The parameter ¢ is the total number of quanta in the system and is a constant. These quanta
are statistically distributed over the N atoms of the solid so all possible states of the system are equally likely

and the multiplicity €2 is
(g+3N —1)!

STET ©

This model of an elemental solid is called an Einstein solid.

We want to find a connection between the entropy defined in Equation 1 and the temperature. Recall how
temperature is usually defined relative to some properties of matter like the freezing and boiling points of water.
You are developing the microscopic picture of entropy, but it won’t be successful until you can connect it to the
observed behavior of bulk matter and our familiar notions of temperature.

Activity 1: The Entropy of Einstein Solids in Thermal Equilibrium

(a) To start connecting the entropy to the temperature you have to study the behavior of the entropy as the
energy changes. To do this we will study two Einstein solids (A and B) in thermal equilibrium with each other.
Their total internal energy will be

Eint = gaphw = (g4 + gB)hw (7)

where g4 and ¢p are the numbers of energy quanta in each solid and g4p is their sum.

Use the program StatMech (see the Physics Applications menu) for the configuration where you choose N4 >
100, Np > 80 and U > 400. The label U in the StatMech window refers the total number of energy quanta in the
system in units of Aw and is equivalent to g4p here. An example of the output of StatMech is shown in Figure 1.
The first two columns in the lower panel of Figure 1 represent U(A) and U(B), the energies in each individual
solid (again in units of hw) and are equivalent to g4 and ¢g. After you perform the calculation with StatMech
scan quickly down the column labeled ‘Omega(AB)’. If any of the exponents you see exceed the value 307, then
run the calculation again with smaller inputs until no exponent exceeds 307. This limitation is a restriction on
MicroSoft Ezcel that you will use later to make plots. Record your values of N4, Ng, and U.

(b) Now generate plots of Sap = Sa + SB, Sa, and Sg from the StatMech table. You can do this with Ezxcel,
but there are some intermediate steps necessary. Start Microsoft Word first. Next, go to the StatMech window,
highlight the table, copy it (see the Edit menu on the StatMech window), and paste it into the Word document.
In Word edit out all the commas (‘,”) and asterisks (‘*’) in the file (use the Replace option under the Edit menu).

10
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Figure 4: The StatMech window showing the table of multiplicities for each microstate. Each row corresponds to
a different value of ¢4.

Save the Word file, but save it as a plain text (‘.txt’) file. You can now open the file in Ezcel. When you open the
file, Fzcel pops up a Text Import Wizard that will guide you through the format of the input file. The defaults
usually seem to work. Use Ezcel to calculate and plot on one graph Sap, Sa, and S as a function of ¢4. Print
out your plot and attach it to this unit.

(c) What is g4 for the most probable macrostate? What mathematical condition can you impose on the total
entropy Sap to determine the most probable macrostate? How do you think the temperatures of solids A and B
are related at the most probable microstate?

(d) How are the slopes of S4 and Sp related to one another at the most probable microstate?
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2 ENTROPY AND TEMPERATURE

(e) How is E 4, the energy in solid A related to ga? How is Eg, the energy in solid B related to g4? Remember
that g4p is a constant and gag = qa + ¢g. Calculate the differentials dE4 and dEg and rewrite the answer in
part 1.d in terms of dS4/dE4 and dSg/dEg.

Activity 2: Relating Entropy and Temperature

(a) Using the spreadsheet you generated in Activity 1, calculate dS4/dga as a function of ¢4 and plot it. You can
do this to an adequate approximation by doing taking the difference between S4 at adjacent values/rows of g4.
Suppose your spreadsheet has the values of S4 in column H. The Excel syntax for estimating the derivative for
the first value of g4 (the first row) is ‘=(H2-H1) /1.0’ where H2 is the value in the second row and H1 is the value
in the first row. The numerator of one is redundant, but it shows you are approximating the derivative using the
data from points that differ by 1.0 in g4. The syntax for dS4/dga for the second value of g4 is ‘=(H3-H2) /1.0’
and so on. Do the same for dSp/dga and dSap/dga. Does the slope of Ssp pass through zero at the correct
spot (recall part 1.c)? How are dS4/dga and dSp/dqa related at the most probable macrostate. Does you plot
agree with that result?

(b) If the energy E4 and g4 of solid A increases what should the temperature of solid A do? If the energy E4 of
solid A increases what happens to dS4/dga in your plot? Do the temperature and dS4/dga change in the same
way or in a different way as F 4 increases?

(c) We want to come up with a relationship between temperature and the entropy. From the results above (parts
1.a-e) you should have found

dSs dSs
dEs dEg ®)
and
To=1Tg 9)
for the most probable macrostate. This means there is some function of the temperature 7' such that
ds
T)=— 1
=2 (10)

for each solid that will be equal at equilibrium. We want f(T') to behave like the temperatures we are accustomed
to using. In other words, as the energy in the solid increases T' should increase. Recall part 2.b and the behavior
of dS/dE as T increases. Try to guess a mathematical form of f(T") that acts like ‘normal’ temperatures and one
that doesn’t. Explain your reasoning.
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Solid dE/dT per mole | Solid dE/dT per mole
Lead 26.4 J/K — mole | Gold 25.4 J/K — mole
Silver 25.4 J/K — mole | Copper 24.5 J/K — mole
Iron 25.0 J/K — mole | Aluminum 26.4 J/K — mole

Table 2: Heat capacities (dE/dT) for several elemental solids.

(d) How would you choose which of the forms you guessed in part 2.c is the correct one?

Activity 3: Determining f(7) and the Heat Capacity

In the previous Activity you should have found that the mathematical form of f(T") has to be something like
1/T™ where n is some positive number. This is necessary because your graphs should show that as the energy E4
(and the number of quanta g4) of the solid increases f(T') = dS/dE goes down. To make sure the temperature T
behaves reasonable (and goes up with E4 and ¢4) f(T') must be some inverse of function of T'. To decide exactly
which function is right requires comparing Equation 7 or some result from it to some data.

Consider Table 1 of heat capacities (dE/dT") for several elemental solids for high temperatures. The heat capacities
are constant with respect to temperature and are similar in value to one another. These are the data that will
help us determine f(T'). To calculate dE/dT we must find a relationship between E and T for the Einstein solid.

(a) Start with Equations 1 and 7 and the chain rule and show the following.

ds 1dQ
(b) Use Equation 2 to show
Q 1 dQ
dE = hwdg  and d (12)

dE ~ hwdq
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2 ENTROPY AND TEMPERATURE

(c) Starting with Equations 1 and 3 one can show

@_SthQ
dg E

(13)

Combine this equation (number 10) and the results from 3.a-b to get a relationship for dS/dE for the Einstein
solid in terms of N and E. Set that expression equal to f(T'), and solve for E the internal energy. It is the
derivative of this last equation (dE/dT') that will give you the heat capacity. What function of f(7T') will give a
result that is independent of temperature when you take the derivative with respect to T' of your expression for
the internal energy E?

(d) What is the final form of Equation 7 and f(T")?

(e) Calculate the mean and standard deviation of the heat capacity of the elemental solids in Table 1. Calculate
the heat capacity (dE/dT) for the Einstein solid using your results from parts 3.c-d. Is the heat capacity for the
Einstein solid consistent with the measured ones?

Activity 4: The Second Law of Thermodynamics

(a) Go back to your plots of the entropy as a function of g4 from part 1.b. Consider two Einstein solids that
are brought together at a value of g4 that is higher than the equilibrium one at the most probable macrostate.
Choose a value of g4 that is halfway between the most probable value and the maximum. Once the two Einstein
solids are in contact, how will the system evolve? What happens to S4 and Sg? Do they go up, down, or stay
the same? What happens to the total entropy S4p? In fact, based on your plot from part 2.b, is there any
circumstance where S4p will not increase?
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(¢) To vividly see what happens when Einstein solids come in thermal contact, run the program equilib.eze
available in the Physics Applications menu. This program starts with two Einstein solids with all the energy
quanta in solid B. It simulates the evolution of the two solids as they march toward thermal equilibrium. Click
Evolve to see the simulation run.

What you should have discovered in the previous part is that the entropy of the combined systems always increases
regardless of what configuration the Einstein solids are in when they come in contact. The system always evolves
to the most probable, most disordered macrostate where the temperatures will be equal and the entropy is a
maximum. The energy quanta are most spread out. This result is stated in several different ways, but the most
succinct is simply AS > 0 for an isolated system. The entropy of an isolated system always increases. This is
called the Second Law of Thermodynamics.

Activity 4: Homework Problems

1. (E) An object’s entropy is measured to increase by 0.1 J/K when we add 35 J of energy. What is its
approximate temperature? (Assume that the object’s temperature does not change much when we add the
35J.)

2. (E) A certain Einstein solid’s entropy changes from 305.2k; to 338.1k; when we add 1 unit € of energy.
What is the value (and units) of k;T'/€ for this solid? If e = 1.0 eV, what is its temperature T'?

3. (E) Does it make sense to talk about the temperature of a vacuum? If so, how could you measure or
calculate it? If not, why not?

0280

4. (E) An Einstein solid in a certain macrostate has a multiplicity of 3.8 x 10%%°. What is its entropy (expressed

as a multiple of kp)?

5. (E) A pair of Einstein solids in a certain macropartition has multiplicities of 4.2 x 10%2° and 8.6 x 1032,
What are the entropies of each solid? What is the total entropy of the system in this macropartition?
(Express entropies as multiples of k;.)

6. (E) Is it really true that the entropy of an isolated system consisting of two Einstein solids never decreases?
(Consider a pair of very small solids.) Why is this statement more accurate for large systems than for small
systems? Explain in your own words.

7. (P) We have argued on fairly fundamental grounds that dS/dE = f(T'). In principle, we could define f(T')
to be anything that we like: this would amount to defining temperature and its scale. Still, some definitions
would violate deeply embedded preconceptions about the nature of temperature. For example, the simplest
definition of temperature would be dS/dE = T¢y. Show that this definition

(a) Would imply that T, has units of K~! and

(b) Would imply that heat would flow spontaneously from objects with low T, to objects with high
Thew- This would imply that object with low values of T, are hot, while objects with high values
Thew are cold (we might want to call Tj,e,, so defined coolness instead of temperature). While we could
define temperature in this way, it would really fly in the face of convention (if not intuition).

(¢) If we did define coolness Ty, in this way, what ordinary temperature T would an object with absolutely
zero coolness ( Thew = 0) have? What about something that is infinitely cool (T, = 00)?

8. (P) Imagine that the entropy of a certain substance as a function of N and E is given by the formula
S = NkyIn E. Using the definition of temperature, show that the thermal energy of this substance is
related to its temperature by the expression £ = NkpT'.

9. (P) Imagine that the multiplicity of a certain substance is given by Q(E, N) = NeVNP/¢_ where € is some
unit of energy. How would the energy of an object made out of this substance depend on its temperature?
Would this be a ‘normal’ substance in our usual sense of temperature.

10. (P) Consider an Einstein solid having N = 20 atoms.
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(a) What is the solids temperature when it has an energy of 10¢, assuming that € = hw = 0.02eV?
Calculate this directly from the definition of temperature by finding S at 10e and 1le, computing
dS/dE =~ [S(11le) — S(10¢€)]/e, and then applying the definition of temperature. (You will find that
your work will go faster if you use StatMech to tabulate the multiplicities.)

(b) How does this compare with the result from the formula E = 3NkyT (which is only accurate if N is
large and E/3Ne > 1)?

(¢) If you have access to StatMech, repeat for N = 200 and E = 100e. (Hint: If your calculator cannot
handle numbers in excess of 10'%, use the fact that in (a x 10°) = Ina + b1n 10).
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