Consider the alpha decay shown below where a uranium nucleus spontaneously breaks apart into a  $^4{\rm He}$  or alpha particle and  $^{234}_{90}{\rm Th}.$ 

$$^{238}_{92}\text{U} \rightarrow ^{4}\text{He} + ^{234}_{90}\text{Th} \qquad \text{E(^4He)} = 4.2 \text{ MeV}$$

To study this reaction we first map out the  ${}^4{\rm He} - {}^{234}_{90}{\rm Th}$  potential energy. We reverse the decay above and use a beam of  ${}^4{\rm He}$  nuclei striking a  ${}^{234}_{90}{\rm Th}$  target. The  ${}^4{\rm He}$  beam comes from the radioactive decay of another nucleus  ${}^{210}_{84}{\rm Po}$  and  ${\rm E}({}^4{\rm He}) = 5.407~{\rm MeV}$ .

- What is the distance of closest approach of the  $^4{\rm He}$  to the  $^{234}{\rm Th}$  target if the Coulomb force is the only one that matters?
- ② Is the Coulomb force the only one that matters?
- $oldsymbol{\circ}$  What is the lifetime of the  $^{238}_{92}\mathrm{U}$ ?



## **Rutherford Scattering**

What is the distance of closest approach of the  $^4{\rm He}$  to the  $^{234}_{90}{\rm Th}$  target if only the Coulomb force is active? Is the Coulomb force the only one active? The energy of the  $^4{\rm He}$  emitted by the  $^{210}_{84}{\rm Po}$  to make the beam is  ${\rm E}(^4{\rm He})=5.407~{\rm MeV}.$ 



## **Rutherford Scattering**

What is the distance of closest approach of the  $^4\mathrm{He}$  to the  $^{234}_{90}\mathrm{Th}$  target if only the Coulomb force is active? Is the Coulomb force the only one active? The energy of the  $^4\mathrm{He}$  emitted by the  $^{210}_{84}\mathrm{Po}$  to make the beam is

 $E(^{4}He) = 5.407 \text{ MeV}.$ pe Alpha source beam

## **Rutherford Scattering**

What is the distance of closest approach of the  $^4\mathrm{He}$  to the  $^{234}_{90}\mathrm{Th}$  target if only the Coulomb force is active? Is the Coulomb force the only one active? The energy of the  $^4\mathrm{He}$  emitted by the  $^{210}_{84}\mathrm{Po}$  to make the beam is

 $E(^{4}He) = 5.407 \text{ MeV}.$ pe Alpha source beam



#### The Differential Cross Section

























What does this say about the  ${}_{2}^{4}\mathrm{He} - {}_{90}^{234}\mathrm{Th}$  potential energy?







- We have probed the  ${}^4\mathrm{He} {}^{234}_{90}\mathrm{Th}$  potential into an internuclear distance of  $r_{DOCA} = 48$  fm with a  ${}^4\mathrm{He}$  beam of  $\mathrm{E}({}^4\mathrm{He}) = 5.407$  MeV.
- 2 The data are consistent with the Coulomb force and no others.
- **3** The radioactive decay  $^{238}_{92}{\rm U} \to ^{234}_{90}{\rm Th} + ^4{\rm He}$  emits an  $\alpha$  (or  $^4{\rm He}$ ) with energy  $E_{\alpha}=$  4.2 MeV.
- **②** For a classical 'decay' the emitted  $\alpha$  should have an energy of at least  $E_{min} = 5.407 \text{ MeV}$ .
- **1** It appears the 'decay'  $\alpha$  starts out at a distance  $r_{emit} =$  62 fm.
- How do we explain this?

- We have probed the  ${}^{4}\text{He} {}^{234}_{90}\text{Th}$  potential into an internuclear distance of  $r_{DOCA} = 48$  fm with a  ${}^{4}\text{He}$  beam of  $E({}^{4}\text{He}) = 5.407$  MeV.
- 2 The data are consistent with the Coulomb force and no others.
- **3** The radioactive decay  $^{238}_{92}{\rm U} \to ^{234}_{90}{\rm Th} + ^4{\rm He}$  emits an  $\alpha$  (or  $^4{\rm He}$ ) with energy  $E_{\alpha}=$  4.2 MeV.
- For a classical 'decay' the emitted  $\alpha$  should have an energy of at least  $E_{min} = 5.407~{
  m MeV}$ .
- **1** It appears the 'decay'  $\alpha$  starts out at a distance  $r_{emit} = 62$  fm.
- How do we explain this?

# Quantum Tunneling!

- We have probed the  ${}^{4}\text{He} {}^{234}_{90}\text{Th}$  potential into an internuclear distance of  $r_{DOCA} = 48$  fm with a  ${}^{4}\text{He}$  beam of  $E({}^{4}\text{He}) = 5.407$  MeV.
- 2 The data are consistent with the Coulomb force and no others.
- **3** The radioactive decay  $^{238}_{92}{\rm U} \to ^{234}_{90}{\rm Th} + ^4{\rm He}$  emits an  $\alpha$  (or  $^4{\rm He}$ ) with energy  $E_{\alpha}=$  4.2 MeV.
- For a classical 'decay' the emitted  $\alpha$  should have an energy of at least  $E_{min} = 5.407~{
  m MeV}$ .
- **1** It appears the 'decay'  $\alpha$  starts out at a distance  $r_{emit} = 62$  fm.
- How do we explain this?

## Quantum Tunneling!

What do we measure?

- We have probed the  ${}^{4}\text{He} {}^{234}_{90}\text{Th}$  potential into an internuclear distance of  $r_{DOCA} = 48$  fm with a  ${}^{4}\text{He}$  beam of  $E({}^{4}\text{He}) = 5.407$  MeV.
- 2 The data are consistent with the Coulomb force and no others.
- **3** The radioactive decay  $^{238}_{92}{\rm U} \to ^{234}_{90}{\rm Th} + ^4{\rm He}$  emits an  $\alpha$  (or  $^4{\rm He}$ ) with energy  $E_{\alpha}=$  4.2 MeV.
- **③** For a classical 'decay' the emitted  $\alpha$  should have an energy of at least  $E_{min} = 5.407 \, \mathrm{MeV}$ .
- **1** It appears the 'decay'  $\alpha$  starts out at a distance  $r_{emit} = 62$  fm.
- How do we explain this?

# Quantum Tunneling!

What do we measure?

Lifetimes 
$$t_{1/2}(^{238}U) = 4.5 \times 10^9 \text{ yr}$$

- The  $\alpha$  particle ( $^4\mathrm{He}$ ) is confined by the nuclear potential and 'bounces' back and forth between the walls of the nucleus. Assume its energy is the same as the emitted nucleon so  $v=\sqrt{\frac{2E_\alpha}{m}}$ .
- ② Each time it 'bounces' off the nuclear wall it has a finite probability of tunneling through the barrier equal to the transmission coefficient T.
- **3** The decay rate will the product of the rate of collisions with a wall and the probability of transmission equal to  $\frac{v}{2R} \times T$ .
- **1** The lifetime is the inverse of the decay rate  $\frac{2R}{vT} = 2R\sqrt{\frac{m}{2E}}\frac{1}{T}$ .
- **1** The radius of a nucleus has been found to be described by  $r_{nuke} = 1.2A^{1/3}$  where A is the mass number of the nucleus.
- We are liberally copying the work of Gamow, Condon, and Gurney. Like them we will assume V=0 inside the nucleus and V=0 from the classical turning point to infinity.



$$\begin{split} \psi_1 &= \mathbf{t} \psi_3 = \mathbf{d}_{12} \mathbf{p}_2 \mathbf{d}_{21} \mathbf{p}_2^{-1} \psi_3 = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix} \psi_3 \qquad \mathcal{T} = \frac{1}{|t_{11}|^2} \\ \mathbf{d}_{12} &= \frac{1}{2} \begin{pmatrix} 1 + \frac{k_2}{k_1} & 1 - \frac{k_2}{k_1} \\ 1 - \frac{k_2}{k_1} & 1 + \frac{k_2}{k_1} \end{pmatrix} \quad \mathbf{d}_{21} = \frac{1}{2} \begin{pmatrix} 1 + \frac{k_1}{k_2} & 1 - \frac{k_1}{k_2} \\ 1 - \frac{k_1}{k_2} & 1 + \frac{k_1}{k_2} \end{pmatrix} \\ \mathbf{p}_2^{-1} &= \begin{pmatrix} e^{ik_2 2a} & 0 \\ 0 & e^{-ik_2 2a} \end{pmatrix} \qquad \mathbf{p}_2 = \begin{pmatrix} e^{-ik_2 2a} & 0 \\ 0 & e^{ik_2 2a} \end{pmatrix} \\ k_1 &= \sqrt{\frac{2mE}{\hbar^2}} \qquad k_2 = \sqrt{\frac{2m(E-V)}{\hbar^2}} \end{split}$$

Jerry Gilfoyle Alpha Decay 21 / 34

 $t_{11} = \frac{1}{4} \left[ \left( 1 + \frac{k_2}{k_1} \right) e^{-ik_2 2a} \left( 1 + \frac{k_1}{k_2} \right) + \left( 1 - \frac{k_2}{k_1} \right) e^{ik_2 2a} \left( 1 - \frac{k_1}{k_2} \right) \right]$ 







**n** - left side of barrier **m** - right side of barrier  $V_n$  - potential of  $n^{th}$  step. s - step size.

$$\begin{aligned} \mathbf{d_{nm}} &= \frac{1}{2} \begin{pmatrix} 1 + \frac{k_m}{k_n} & 1 - \frac{k_m}{k_n} \\ 1 - \frac{k_m}{k_n} & 1 + \frac{k_m}{k_n} \end{pmatrix} \quad \mathbf{p_m} \quad = \begin{pmatrix} e^{-ik_m s} & 0 \\ 0 & e^{ik_m s} \end{pmatrix} \\ k_1 &= \sqrt{\frac{2mE}{\hbar^2}} = k_7 \qquad k_n = \sqrt{\frac{2m(E - V_n)}{\hbar^2}} \\ \mathcal{T} &= \frac{1}{|\mathbf{f_{t+1}}|^2} \end{aligned}$$

$$\psi_1 = \mathbf{d}_{12}\mathbf{p}_2 \cdot \mathbf{d}_{23}\mathbf{p}_3 \cdot \mathbf{d}_{34}\mathbf{p}_4 \cdot \underbrace{\mathbf{d}_{45}\mathbf{p}_5}_{\text{unit cell}} \cdot \mathbf{d}_{56}\mathbf{p}_6 \cdot \mathbf{d}_{67}\mathbf{p}_7 \psi_7'$$

The last propagation matrix  $\mathbf{p_7}$  leaves you one stepsize to the right of the last discontinuity. Adding another propagation matrix to reset the origin to its original position has no effect on  $t_{11}$ .



**n** - left side of barrier **m** - right side of barrier  $V_n$  - potential of  $n^{th}$  step. s - step size.

$$\begin{aligned} \mathbf{d_{nm}} &= \frac{1}{2} \begin{pmatrix} 1 + \frac{k_m}{k_n} & 1 - \frac{k_m}{k_n} \\ 1 - \frac{k_m}{k_n} & 1 + \frac{k_m}{k_n} \end{pmatrix} \quad \mathbf{p_m} \quad = \begin{pmatrix} e^{-ik_m s} & 0 \\ 0 & e^{ik_m s} \end{pmatrix} \\ k_1 &= \sqrt{\frac{2mE}{\hbar^2}} = k_7 \qquad k_n = \sqrt{\frac{2m(E - V_n)}{\hbar^2}} \\ \mathcal{T} &= \frac{1}{|\mathbf{f_{t+1}}|^2} \end{aligned}$$

$$\psi_1 = \mathbf{d}_{12}\mathbf{p}_2 \cdot \mathbf{d}_{23}\mathbf{p}_3 \cdot \mathbf{d}_{34}\mathbf{p}_4 \cdot \underbrace{\mathbf{d}_{45}\mathbf{p}_5}_{\text{unit cell}} \cdot \mathbf{d}_{56}\mathbf{p}_6 \cdot \mathbf{d}_{67}\mathbf{p}_7 \psi_7'$$

The last propagation matrix  $\mathbf{p_7}$  leaves you one stepsize to the right of the last discontinuity. Adding another propagation matrix to reset the origin to its original position has no effect on  $t_{11}$ .



| n | $\mathbf{E}_{\alpha}$ | $t_{1/2}(meas/s)$                     | Nucleus | Z  | Α   | T(calculated)             | $t_{1/2}\ (calc/s)$                      |
|---|-----------------------|---------------------------------------|---------|----|-----|---------------------------|------------------------------------------|
| 2 | 7.006                 | 4.8                                   | 209-Rn  | 88 | 209 | $6.75453 \times 10^{-23}$ | 14.454                                   |
| 1 | 9.079                 | $\textbf{1.25}\times\textbf{10}^{-7}$ | 213-At  | 85 | 213 | $2.85291 \times 10^{-15}$ | $\textbf{3.02145}\times\textbf{10}^{-7}$ |

| n  | $\mathbf{E}_{\alpha}$ | $t_{1/2}  (meas/s)$  | Nucleus | Z   | Α   | n  | $\mathbf{E}_{\alpha}$ | $t_{1/2}\left(meas/s\right)$ | Nucleus | Z   | Α   |
|----|-----------------------|----------------------|---------|-----|-----|----|-----------------------|------------------------------|---------|-----|-----|
| 1  | 11.367                | 0.0019               | 273-Ds  | 110 | 273 | 16 | 7.312                 | 0.024                        | 219-Fr  | 87  | 219 |
| 2  | 8.939                 | 44.                  | 274-Bh  | 107 | 274 | 17 | 5.168                 | 2.07×10 <sup>11</sup>        | 240-Pu  | 94  | 240 |
| 3  | 11.18                 | 0.00058              | 294-0g  | 118 | 294 | 18 | 6.819                 | 3.96                         | 299-Rn  | 86  | 219 |
| 4  | 11.18                 | 0.051                | 294-Ts  | 117 | 294 |    |                       | 11                           |         |     |     |
| 5  | 11.622                | 0.00061              | 227-Cn  | 112 | 277 | 19 | 5.361                 | 2.656×10                     | 245-Cm  | 96  | 245 |
| 6  | 9.9                   | 0.69                 | 221-Mt  | 109 | 276 | 20 | 8.78                  | 3. × 10 <sup>-7</sup>        | 212-Po  | 84  | 212 |
| 7  | 7.642                 | 0.052                | 221-Ac  | 89  | 221 | 21 | 6.78                  | 0.15                         | 216-Po  | 84  | 216 |
| 8  | 6.342                 | 56.                  | 204-At  | 85  | 219 | 22 | 8.                    | 0.0001                       | 215-At  | 85  | 215 |
| 9  | 5.114                 | 9.14×10 <sup>7</sup> | 208-Po  | 84  | 208 | 23 | 6.26                  | 1500.                        | 212-Rn  | 86  | 212 |
| 10 | 4.674                 | 37.1                 | 153-Er  | 68  | 153 | 24 | 7.55                  | 0.9                          | 223-Th  | 90  | 223 |
| 11 | 4.804                 | 10.3                 | 152-Er  | 68  | 152 | 25 | 7.17                  | 1500.                        | 244-Cf  | 98  | 244 |
| 12 | 5.2                   | 1.793                | 155-Yb  | 70  | 155 | 26 | 7.9                   | 34.5                         | 248-Fm  | 100 | 248 |
| 13 | 10.31                 | 0.65                 | 290-Mc  | 115 | 290 | 27 | 4.19                  | 1.4×10 <sup>17</sup>         | 238-U   | 92  | 238 |
| 14 | 9.042                 | 1.52                 | 260-Db  | 105 | 260 | 28 | 6.58                  | 2200.                        | 232-Pu  | 94  | 232 |
| 15 | 6.633                 | 86400.               | 253-Es  | 99  | 253 | 29 | 6.01                  | 4700.                        | 239-Am  | 95  | 239 |
|    |                       |                      |         |     |     | 30 | 7.827                 | 0.087                        | 214-Th  | 90  | 214 |

Energies are in MeV.

There are some differences between the formula for Rutherford scattering in the reading (go here) that are discussed below. The lecture formula is

$$\frac{d\sigma}{d\Omega} = \left(\frac{Z_1 Z_2 e^2}{4E_{cm}}\right)^2 \frac{1}{\sin^4\left(\frac{\theta}{2}\right)} \tag{1}$$

while the expression in the reading is the following.

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi}{2}z^2 Z^2 \alpha^2 \left[\frac{\hbar c}{KE}\right]^2 \frac{1}{(1-\cos\theta)^2}$$
 (2)

To go from Eq 1 to Eq 2 you need to make the following changes.

- ① Change some variable names so  $Z_1 = z$ ,  $Z_2 = Z$ ,  $E_{cm} = KE$ .
- ② Use  $d\Omega = \sin\theta d\theta d\phi = d\cos\theta d\phi$  and integrate over all  $\phi$  or  $\phi = 0 \rightarrow 2\pi$ . This gives you a factor of  $2\pi$  in front of Eq 1.

$$\frac{d\sigma}{d\cos\theta} = \int_0^{2\pi} \frac{d\sigma}{d\Omega} d\phi = 2\pi \frac{d\sigma}{d\Omega} \tag{3}$$

Make the following substitutions

$$e^2 = \alpha \hbar c$$
 and  $\sin^2 \frac{\theta}{2} = \frac{1}{2} (1 - \cos \theta)$  (4)

and you get Eq 2.

- Define ALL variables with descriptive names.
- Add comments for each 'section' of code.
- Put inputs for individual calculation at the top of your code with comments describing each item.
- Out constants used for all calculations in one section.
- Indent 'new' sections.

- Suppress printing until the end.
- Print output at the end. (\* extract the transmission coefficient from the

```
transition matrix here. *)
tr = Abs[1/(Conjugate[trans[[1, 1]]] * trans[[1, 1]])];
Print["Transmission Coefficient: ". tr]:
```



Additional slides.

particle rate scattered into 
$$dA$$
 of detector 
$$\frac{dN_s}{dt} \propto \begin{array}{c} \text{incident areal angular} \\ \text{beam } \times \text{target} \times \text{detector} \\ \text{rate density size} \\ \hline \frac{dN_s}{dt} \propto \frac{dN_{inc}}{dt} \times n_{tgt} \times d\Omega \\ \hline \frac{dN_s}{dt} = \frac{d\sigma}{d\Omega} \times \frac{dN_{inc}}{dt} \times n_{tgt} \times d\Omega$$

$$\frac{dN_{inc}}{dt} = \frac{\Delta N_{inc}}{\Delta t} = \frac{I_{beam}}{Ze}$$

 $I_{beam}$  - beam current Z - beam charge

$$n_{tgt} = rac{
ho_{tgt}}{A_{tgt}} N_A V_{hit} rac{1}{a_{beam}} = rac{
ho_{tgt}}{A_{tgt}} N_A L_{tgt}$$

 $ho_{tgt}$  - target density  $A_{tgt}$  - molar mass  $V_{hit}$  - beam-target overlap  $a_{beam}$  - beam area  $L_{tgt}$  - target thickness



particle rate scattered into 
$$dA$$
 of detector 
$$= \frac{dN_s}{dt} \propto \begin{array}{c} \text{incident} & \text{areal} & \text{angular} \\ \text{beam} & \times \text{target} & \times \text{detector} \\ \text{rate} & \text{density} & \text{size} \\ \end{array}$$
 
$$\frac{dN_s}{dt} \propto \frac{dN_{inc}}{dt} \times n_{tgt} \times d\Omega$$
 
$$\frac{dN_s}{dt} = \frac{d\sigma}{d\Omega} \times \frac{dN_{inc}}{dt} \times n_{tgt} \times d\Omega$$

$$\frac{dN_{inc}}{dt} = \frac{\Delta N_{inc}}{\Delta t} = \frac{I_{beam}}{Ze}$$

 $I_{beam}$  - beam current Z - beam charge

 $\rho_{tgt}$  - target density

$$n_{tgt} = rac{
ho_{tgt}}{A_{tgt}} N_A V_{hit} rac{1}{a_{beam}} = rac{
ho_{tgt}}{A_{tgt}} N_A L_{tgt}$$

 $A_{tgt}$  - molar mass  $V_{hit}$  - beam-target overlap  $a_{beam}$  - beam area  $L_{tgt}$  - target thickness

$$d\Omega = rac{dA_{det}}{r_{det}^2} = rac{\Delta A_{det}}{r_{det}^2} = \sin heta d heta d\phi$$

 $dA_{det}$  - detector area  $r_{det}$  - target-detector distance