What are These?

1

What are These?

¹ Until the 20th century, anthrax killed hundreds of thousands of people and animals each year.

What are These?

4

- ¹ Until the 20th century, anthrax killed hundreds of thousands of people and animals each year.
- ² Even now for an inhaled anthrax infection the risk of death is 50-80% despite treatment.

What are These?

5

- **1** Until the 20th century, anthrax killed hundreds of thousands of people and animals each year.
- ² Even now for an inhaled anthrax infection the risk of death is 50-80% despite treatment.
- **3** A long-standing fear is a biological attack using an agent like anthrax or smallpox.
- The natural spread of the disease and its indiscriminate nature can amplify the impact.

What are These?

6

- **1** Until the 20th century, anthrax killed hundreds of thousands of people and animals each year.
- ² Even now for an inhaled anthrax infection the risk of death is 50-80% despite treatment.
- **3** A long-standing fear is a biological attack using an agent like anthrax or smallpox.
- The natural spread of the disease and its indiscriminate nature can amplify the impact.
- **5** Some weaponized forms could cause mass casualties.
- **6** Defense against such an attack is focused on rapid identification and mitigation.

What are These?

Have We Been Attacked?

- **1** The attack will not be obvious; it may take hours or days to know.
- ² Current biological diagnostics are very effective, but they're slow.
- **3** Fast response time is essential to avoid overwhelming the health-care system

 \Rightarrow rapid response is vital.

Have We Been Attacked? 8

- **1** The attack will not be obvious; it may take hours or days to know.
- **2** Current biological diagnostics are very effective, but they're slow.
- ³ Fast response time is essential to avoid overwhelming the health-care system \Rightarrow rapid response is vital.
- **4** Nanosized oscillators cantilevers can be coated with antibodies to bind to spores of specific diseases.
- **5** As the spores bind, the oscillations of the device change.
- **6** The change is measured by deflection of a laser beam shining on the cantilever.

You're a program manager for DARPA and you're evaluating a proposal to use a nano-sized cantilever to detect the presence of anthrax spores. To test the validity of the proposal consider the following problem. The cantilever can be treated as a simple harmonic oscillator of mass m_c (see below). Suppose $n_a = 300$ anthrax spores each with mass $m_a = 10^{-15}$ kg accumulate on the cantilever beam. What is the change $\Delta\omega$ in the angular frequency of the cantilever? We can detect angular frequency changes of $\approx 10^6$ *rad/s*. Is this change detectable? WILL IT WORK?

$$
L_c = 100 \mu m
$$

\n
$$
m_c = 1.49 \times 10^{-12} \text{ kg}
$$

\n
$$
k_0 = 370 \text{ kg/s}^2
$$

1 The Force: $F_s = -kx$ where x is the displacement from equilibrium.

- **1** The Force: $F_s = -kx$ where x is the displacement from equilibrium.
- ² Measurements:

- **1** The Force: $F_s = -kx$ where x is the displacement from equilibrium.
- ² Measurements:

3 The Solution: $x(t) = A \cos(\omega t + \phi)$

- **1** The Force: $F_s = -kx$ where x is the displacement from equilibrium.
- ² Measurements:

- **3** The Solution: $x(t) = A \cos(\omega t + \phi)$
- ⁴ Newton's Second Law yields

$$
\frac{d^2x(t)}{dt^2} = -\frac{k}{m}x(t)
$$

time (t)

- **1** The Force: $F_s = -kx$ where x is the displacement from equilibrium.
- ² Measurements:

- **3** The Solution: $x(t) = A \cos(\omega t + \phi)$
- ⁴ Newton's Second Law yields

$$
\frac{d^2x(t)}{dt^2} = -\frac{k}{m}x(t)
$$

1 The Force: $F_s = -kx$ where x is the displacement from equilibrium.

² Measurements:

3 The Solution: $x(t) = A \cos(\omega t + \phi)$

⁴ Newton's Second Law yields

$$
\frac{d^2x(t)}{dt^2} = -\frac{k}{m}x(t)
$$

Parameters: $\omega =$ \sqrt{k} $rac{k}{m}$ $T = \frac{2\pi}{\omega}$ $\frac{2\pi}{\omega}$ $f = \frac{1}{7}$ T A and ϕ are initial conditions.

Music! 21

The end of the prong of a tuning fork that executes simple harmonic motion with a frequency of 1024 Hz has an amplitude $A = 0.4$ mm. What is the maximum velocity v_{max} and maximum acceleration a_{max} of the end of a prong? What is the angular frequency? How long does it take for the prong to go from the equilibrium point to $x_1 = 0.1$ mm?

Energy in the Harmonic Oscillator 22

Carbon and oxygen are bound together by a force that can be modeled as a harmonic oscillator (see below). If the angular frequency is $\omega = 3.8 \times 10^{14}$ rad/s and the mass is $m = 1.14 \times 10^{-26}$ kg, then what is the spring constant k ? If the energy of the ground state is $E = 2 \times 10^{-20}$ J, then what is the amplitude of the oscillation?

How Do you Weigh a Weightless Person? 23

To weigh astronauts on the International Space Station NASA uses a [chair](https://www.youtube.com/watch?v=oU3pp_4n84U) of mass m_c mounted on a spring of spring constant $k_c = 605.6 \frac{N}{m}$ that is anchored to the spacecraft. The period of the oscillation of the empty chair is $T_c = 0.90149$ s. When an astronaut is sitting in the chair the new period is $T_a = 2.12151$ s. What is the mass of the astronaut?

A transducer used in medical ultrasound imaging is a very thin disk $(m = 0.10 \text{ g})$ oscillating back and forth at a frequency $f = 10^6$ Hz driven by an electromagnetic coil. The maximum restoring force that can be applied to the disk without breaking it is $F_{max} = 40,000$ N. (a) What is the maximum oscillation amplitude that won't rupture the disk? (b) What is the disk's maximum speed at this amplitude?

Biomechanics! 25

Human cadavers have been used to measure the moments of inertia of different body parts for orthopedics and biomechanics. Consider the center of mass of a lower leg $m = 5.2$ kg was found to be $\ell = 0.19$ m from the knee. When the leg was allowed to pivot at the knee and swing freely as a pendulum, the oscillation frequency was $f = 1.6$ Hz. What was the moment of inertia of the lower leg about the knee joint?

The Anatomy Lesson of Dr. Nicolaes Tulp by Rembrandt

Biomechanics! 26

Human cadavers have been used to measure the moments of inertia of different body parts for orthopedics and biomechanics. Consider the center of mass of a lower leg $m = 5.2$ kg was found to be $\ell = 0.19$ m from the knee. When the leg was allowed to pivot at the knee and swing freely as a pendulum, the oscillation frequency was $f = 1.6$ Hz. What was the moment of inertia of the lower leg about the knee joint?

The Anatomy Lesson of Dr. Nicolaes Tulp by Rembrandt

You're a program manager for DARPA and you're evaluating a proposal to use a nano-sized cantilever to detect the presence of anthrax spores. To test the validity of the proposal consider the following problem. The cantilever can be treated as a simple harmonic oscillator of mass m_c (see below). Suppose $n_a = 300$ anthrax spores each with mass $m_a = 10^{-15}$ kg accumulate on the cantilever beam. What is the change $\Delta\omega$ in the angular frequency of the cantilever? We can detect angular frequency changes of $\approx 10^6$ *rad/s*. Is this change detectable? WILL IT WORK? DO YOU GIVE THEM TAXPAYER DOLLARS?

$$
L_c = 100 \mu m
$$

\n
$$
m_c = 1.49 \times 10^{-12} \text{ kg}
$$

\n
$$
k_0 = 370 \text{ kg/s}^2
$$

An Oscillating Cantilever 28

The Harmonic Oscillator Approximation 29

The Center of Mass Frame of Reference 30

- **1** The Force: $F_s = -kx$ where x is the displacement from equilibrium.
- **2** The Potential Energy: $V_s(x) = \frac{1}{2}kx^2$

Measurements:

4 The Solution: $x(t) = A \cos(\omega t + \phi)$

Parameters:

$$
\omega = \sqrt{\frac{k}{m}} \quad T = \frac{2\pi}{\omega} \quad f = \frac{1}{T} \qquad \text{A and } \phi \text{ are initial con-}
$$

The Harmonic Oscillator is All Over 33

1 The Force: $F_s = -kx$ where x is the displacement from equilibrium.

The Harmonic Oscillator is All Over 34

1 The Force: $F_s = -kx$ where x is the displacement from equilibrium. **2** The Potential Energy: $V_s(x) = \frac{1}{2}kx^2$

The Harmonic Oscillator is All Over 35

- **1** The Force: $F_s = -kx$ where x is the displacement from equilibrium.
- **2** The Potential Energy: $V_s(x) = \frac{1}{2}kx^2$
- ³ For many molecules (and atoms and nuclei) they're potential energies are, sometimes, well described by the harmonic oscillator.

Angular Momentum Conservation 36

